Application of instantaneous rotations to S‐wave vertical seismic profiling

Geophysics ◽  
1997 ◽  
Vol 62 (5) ◽  
pp. 1365-1368
Author(s):  
M. Boulfoul ◽  
Doyle R. Watts

The petroleum exploration industry uses S‐wave vertical seismic profiling (VSP) to determine S‐wave velocities from downgoing direct arrivals, and S‐wave reflectivities from upgoing waves. Seismic models for quantitative calibration of amplitude variation with offset (AVO) data require S‐wave velocity profiles (Castagna et al., 1993). Vertical summations (Hardage, 1983) of the upgoing waves produce S‐wave composite traces and enable interpretation of S‐wave seismic profile sections. In the simplest application of amplitude anomalies, the coincidence of high amplitude P‐wave reflectivity and low amplitude S‐wave reflectivity is potentially a direct indicator of the presence of natural gas.

Geophysics ◽  
1988 ◽  
Vol 53 (1) ◽  
pp. 76-84 ◽  
Author(s):  
E. L. Majer ◽  
T. V. McEvilly ◽  
F. S. Eastwood ◽  
L. R. Myer

In a pilot vertical seismic profiling study, P-wave and cross‐polarized S-wave vibrators were used to investigate the potential utility of shear‐wave anisotropy measurements in characterizing a fractured rock mass. The caprock at The Geysers geothermal field was found to exhibit about an 11 percent velocity variation between SH-waves and SV-waves generated by rotating the S-wave vibrator orientation to two orthogonal polarizations for each survey level in the well. The effect is generally consistent with the equivalent anisotropy expected from the known fracture geometry.


Geophysics ◽  
1989 ◽  
Vol 54 (4) ◽  
pp. 478-485 ◽  
Author(s):  
Hassan Ahmed

Three‐component vertical seismic profiling (3-CVSP) data were acquired and processed to yield separate estimates of the compressional (P)-wave and shear (S)-wave fields. Interval velocities, [Formula: see text] and [Formula: see text] (of the P and S waves), are computed from the identified onset times at many seismometer positions along the borehole. The ratio [Formula: see text] is calculated and used to compute the Poisson’s ratio and the ratio of incompressibility to rigidity. In a North Sea well, the variation in these elastic parameters was highly correlated with the variation in stratigraphy. Of particular interest was the ability to indicate pore fluids such as gas or water within a reservoir. Abrupt changes of the calculated parameters can be an indicator of the gas‐water to water transition zone.


1994 ◽  
Vol 34 (1) ◽  
pp. 189
Author(s):  
T. L. Burnett

As economics of the oil and gas industry become more restrictive, the need for new means of improving exploration risks and reducing expenses is becoming more acute. Partnerships between industry and academia are making significant improvements in four general areas: Seismic acquisition, reservoir characterisation, quantitative structural modelling, and geochemical inversion.In marine seismic acquisition the vertical cable concept utilises hydrophones suspended at fixed locations vertically within the water column by buoys. There are numerous advantages of vertical cable technology over conventional 3-D seismic acquisition. In a related methodology, 'Borehole Seismic', seismic energy is passed between wells and valuable information on reservoir geometry, porosity, lithology, and oil saturation is extracted from the P-wave and S-wave data.In association with seismic methods of determining the external geometry and the internal properties of a reservoir, 3-dimensional sedimentation-simulation models, based on physical, hydrologic, erosional and transport processes, are being utilised for stratigraphic analysis. In addition, powerful, 1-D, coupled reaction-transport models are being used to simulate diagenesis processes in reservoir rocks.At the regional scale, the bridging of quantitative structural concepts with seismic interpretation has led to breakthroughs in structural analysis, particularly in complex terrains. Such analyses are becoming more accurate and cost effective when tied to highly advanced, remote-sensing, multi-spectral data acquisition and image processing technology. Emerging technology in petroleum geochemistry, enables geoscientists to infer the character, age, maturity, identity and location of source rocks from crude oil characteristics ('Geochemical Inversion') and to better estimate hydrocarbon-supply volumetrics. This can be invaluable in understanding petroleum systems and in reducing exploration risks and associated expenses.


Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. B335-B351 ◽  
Author(s):  
Wenyong Pan ◽  
Kristopher A. Innanen

Viscoelastic full-waveform inversion is applied to walk-away vertical seismic profile data acquired at a producing heavy-oil field in Western Canada for the determination of subsurface velocity models (P-wave velocity [Formula: see text] and S-wave velocity [Formula: see text]) and attenuation models (P-wave quality factor [Formula: see text] and S-wave quality factor [Formula: see text]). To mitigate strong velocity-attenuation trade-offs, a two-stage approach is adopted. In Stage I, [Formula: see text] and [Formula: see text] models are first inverted using a standard waveform-difference (WD) misfit function. Following this, in Stage II, different amplitude-based misfit functions are used to estimate the [Formula: see text] and [Formula: see text] models. Compared to the traditional WD misfit function, the amplitude-based misfit functions exhibit stronger sensitivity to attenuation anomalies and appear to be able to invert [Formula: see text] and [Formula: see text] models more reliably in the presence of velocity errors. Overall, the root-mean-square amplitude-ratio and spectral amplitude-ratio misfit functions outperform other misfit function choices. In the final outputs of our inversion, significant drops in the [Formula: see text] to [Formula: see text] ratio (~1.6) and Poisson’s ratio (~0.23) are apparent within the Clearwater Formation (depth ~0.45–0.50 km) of the Mannville Group in the Western Canada Sedimentary Basin. Strong [Formula: see text] (~20) and [Formula: see text] (~15) anomalies are also evident in this zone. These observations provide information to help identify the target attenuative reservoir saturated with heavy-oil resources.


Author(s):  
Haohao Zhang ◽  
Jun Lu ◽  
Benchi Chen ◽  
Xuejun Ma ◽  
Zhidong Cai

Abstract The considerable depth and complicated structure of the Tahe Oilfield in the Tuofutai area of China make it very difficult to delineate its Ordovician carbonate fracture-cavity reservoir. The resolution of conventional ground seismic data is inadequate to satisfy current exploitation requirements. To further improve the understanding of the carbonate fracture-cavity reservoir of the Tahe Oilfield and to provide predictions of reservoir properties that are more accurate, a walkaround 3D-3C vertical seismic profiling (VSP) survey was conducted. First, we preprocessed raw VSP data and developed a method of joint PP- and PSV-wave prestack time migration. In contrast to ground seismic imaging profiles, VSP imaging profiles have a higher resolution and wider spectrum range that provide more detailed strata information. Then, using the joint PP- and PSV-wave prestack inversion method, we obtained the PP- and PSV-wave impedance and Poisson's ratio parameters of the Ordovician carbonate reservoir. Compared with the P-wave impedance of the ground seismic inversion, we found the VSP inversion results had higher accuracy, which enabled clearer identification of the internal characteristics of the carbonate reservoir. Finally, coupled with the Poisson's ratio attribute, we predicted the distribution of favorable reservoirs and interwell connectivity. The prediction results were verified using both logging and production data. The findings of this study demonstrate the applicability of the proposed technical method for the exploration of deep carbonate fracture-cavity reservoirs.


2016 ◽  
Vol 4 (4) ◽  
pp. T613-T625 ◽  
Author(s):  
Qizhen Du ◽  
Bo Zhang ◽  
Xianjun Meng ◽  
Chengfeng Guo ◽  
Gang Chen ◽  
...  

Three-term amplitude-variation with offset (AVO) inversion generally suffers from instability when there is limited prior geologic or petrophysical constraints. Two-term AVO inversion shows higher instability compared with three-term AVO inversion. However, density, which is important in the fluid-type estimation, cannot be recovered from two-term AVO inversion. To reliably predict the P- and S-waves and density, we have developed a robust two-step joint PP- and PS-wave three-term AVO-inversion method. Our inversion workflow consists of two steps. The first step is to estimate the P- and S-wave reflectivities using Stewart’s joint two-term PP- and PS-AVO inversion. The second step is to treat the P-wave reflectivity obtained from the first step as the prior constraint to remove the P-wave velocity related-term from the three-term Aki-Richards PP-wave approximated reflection coefficient equation, and then the reduced PP-wave reflection coefficient equation is combined with the PS-wave reflection coefficient equation to estimate the S-wave and density reflectivities. We determined the effectiveness of our method by first applying it to synthetic models and then to field data. We also analyzed the condition number of the coefficient matrix to illustrate the stability of the proposed method. The estimated results using proposed method are superior to those obtained from three-term AVO inversion.


Geophysics ◽  
1990 ◽  
Vol 55 (4) ◽  
pp. 470-479 ◽  
Author(s):  
D. F. Winterstein ◽  
B. N. P. Paulsson

Crosshole and vertical seismic profile (VST) data made possible accurate characterization of the elastic properties, including noticeable velocity anisotropy, of a near‐surface late Tertiary shale formation. Shear‐wave splitting was obvious in both crosshole and VSP data. In crosshole data, two orthologonally polarrized shear (S) waves arrived 19 ms in the uppermost 246 ft (75 m). Vertically traveling S waves of the VSP separated about 10 ms in the uppermost 300 ft (90 m) but remained at nearly constant separation below that level. A transversely isotropic model, which incorporates a rapid increase in S-wave velocities with depth but slow increase in P-wave velocities, closely fits the data over most of the measured interval. Elastic constants of the transvesely isotropic model show spherical P- and [Formula: see text]wave velocity surfaces but an ellipsoidal [Formula: see text]wave surface with a ratio of major to minor axes of 1.15. The magnitude of this S-wave anisotropy is consistent with and lends credence to S-wave anisotropy magnitudes deduced less directly from data of many sedimentary basins.


Geophysics ◽  
1991 ◽  
Vol 56 (6) ◽  
pp. 859-862 ◽  
Author(s):  
Robert R. Stewart

Multicomponent seismic recordings are currently being analyzed in an attempt to improve conventional P‐wave sections and to find and use rock properties associated with shear waves (e.g. Dohr, 1985; Danbom and Dominico, 1986). Mode‐converted (P-SV) waves hold a special interest for several reasons: They are generated by conventional P‐wave sources and have only a one‐way travel path as a shear wave through the typically low velocity and attenuative near surface. For a given frequency, they will have a shorter wavelength than the original P wave, and thus offer higher spatial resolution; this has been observed in several vertical seismic profiling (VSP) cases (e.g., Geis et al., 1990). However, for surface seismic data, converted waves are often found to be of lower frequency than P-P waves (e.g., Eaton et al., 1991).


Sign in / Sign up

Export Citation Format

Share Document