Development of a non-linear porous media flow relationship for oscillatory unsteady flow

2021 ◽  
Author(s):  
Timothy Praditia ◽  
Sergey Oladyshkin ◽  
Wolfgang Nowak

<p>Artificial Neural Networks (ANNs) have been widely applied to model hydrological problems with the increasing availability of data and computing power. ANNs are particularly useful to predict dynamic variables and to learn / discover constitutive relationships between variables. In the hydrology field, a specific example of the relationship takes the form of the governing equations of contaminant transport in porous media flow. Fluid flow in porous media is a spatio-temporal problem and it requires a certain numerical structure to solve. The ANNs, on the other hand, are black-box models that lack interpretability especially in their structure and prediction. Therefore, the discovery of the relationships using ANNs is not apparent. Recently, a distributed spatio-temporal ANN architecture (DISTANA) was proposed. The structure consists of transition kernels that learn the connectivity between one spatial cell and its neighboring cells, and prediction kernels that transform the transition kernels output to predict the quantities of interest at the subsequent time step. Another method, namely the Universal Differential Equation (UDE) for scientific machine learning was also introduced. UDE solves spatio-temporal problems by using a Convolutional Neural Network (CNN) structure to handle the spatial dependency and then approximating the differential operator with an ANN. This differential operator will be solved with Ordinary Differential Equation (ODE) solvers to administer the time dependency. In our work, we combine both methods to design an improved network structure to solve a contaminant transport problem in porous media, governed with the non-linear diffusion-sorption equation. The designed architecture consists of flux kernels and state kernels. Flux kernels are necessary to calculate the connectivity between neighboring cells, and are especially useful for handling different types of boundary conditions (Dirichlet, Neumann, and Cauchy). Furthermore, the state kernels are able to predict both observable states and mass-conserved states (total and dissolved contaminant concentration) separately. Additionally, to discover the constitutive relationship of sorption (i.e. the non-linear retardation factor R), we regularize its training to reflect the known monotonicity of R. As a result, our network is able to approximate R generated with the linear, Freundlich, and Langmuir sorption model, as well as the contaminant concentration with high accuracy.</p>


2017 ◽  
Vol 2 (1) ◽  
Author(s):  
Jia-Hau Ching ◽  
Peilong Chen ◽  
Peichun Amy Tsai

Author(s):  
Tirivanhu Chinyoka ◽  
Daniel Oluwole Makinde

Purpose – The purpose of this paper is to examine the unsteady pressure-driven flow of a reactive third-grade non-Newtonian fluid in a channel filled with a porous medium. The flow is subjected to buoyancy, suction/injection asymmetrical and convective boundary conditions. Design/methodology/approach – The authors assume that exothermic chemical reactions take place within the flow system and that the asymmetric convective heat exchange with the ambient at the surfaces follow Newton’s law of cooling. The authors also assume unidirectional suction injection flow of uniform strength across the channel. The flow system is modeled via coupled non-linear partial differential equations derived from conservation laws of physics. The flow velocity and temperature are obtained by solving the governing equations numerically using semi-implicit finite difference methods. Findings – The authors present the results graphically and draw qualitative and quantitative observations and conclusions with respect to various parameters embedded in the problem. In particular the authors make observations regarding the effects of bouyancy, convective boundary conditions, suction/injection, non-Newtonian character and reaction strength on the flow velocity, temperature, wall shear stress and wall heat transfer. Originality/value – The combined fluid dynamical, porous media and heat transfer effects investigated in this paper have to the authors’ knowledge not been studied. Such fluid dynamical problems find important application in petroleum recovery.


1999 ◽  
Vol 42 (1) ◽  
pp. 109-116 ◽  
Author(s):  
C. M. DaRocha ◽  
L. G. Patruyo ◽  
N. E. Ramírez ◽  
A. J. Müller ◽  
A. E. Sáez

Sign in / Sign up

Export Citation Format

Share Document