Ultrasound myocardial integrated backscatter signal processing: Frequency domain vs. time domain H. Rijsterborgh, F. Mastik, C.T. Lancée, J. Roelandt and N. Bom, Thoraxcentre, Erasmus University Rotterdam and Interuniversity Cardiology Institute of the Netherlands

1992 ◽  
Vol 14 (2) ◽  
pp. 209-210
1993 ◽  
Vol 19 (3) ◽  
pp. 211-219 ◽  
Author(s):  
H. Rijsterborgh ◽  
F. Mastik ◽  
C.T. Lancée ◽  
P. Verdouw ◽  
J. Roelandt ◽  
...  

2020 ◽  
Vol 10 (19) ◽  
pp. 6956
Author(s):  
Yisak Kim ◽  
Juyoung Park ◽  
Hyungsuk Kim

Acquisition times and storage requirements have become increasingly important in signal-processing applications, as the sizes of datasets have increased. Hence, compressed sensing (CS) has emerged as an alternative processing technique, as original signals can be reconstructed using fewer data samples collected at frequencies below the Nyquist sampling rate. However, further analysis of CS data in both time and frequency domains requires the reconstruction of the original form of the time-domain data, as traditional signal-processing techniques are designed for uncompressed data. In this paper, we propose a signal-processing framework that extracts spectral properties for frequency-domain analysis directly from under-sampled ultrasound CS data, using an appropriate basis matrix, and efficiently converts this into the envelope of a time-domain signal, avoiding full reconstruction. The technique generates more accurate results than the traditional framework in both time- and frequency-domain analyses, and is simpler and faster in execution than full reconstruction, without any loss of information. Hence, the proposed framework offers a new standard for signal processing using ultrasound CS data, especially for small and portable systems handling large datasets.


2016 ◽  
Vol 78 (7-4) ◽  
Author(s):  
Priscilla Sim Chee Mei ◽  
Anita Ahmad

Atrial fibrillation (AF) has been widely stated as the most common arrhythmias (irregularities of heart rhythm) which could lead to severe heart problem such as stroke. Many studies have been conducted to understand and explain its mechanism by analyzing its signal, in either time domain or frequency domain. This paper aims to provide basic information on the AF by reviewing relevant papers. Overall, this paper will provide review on the underlying theory of AF, AF mechanism as well as the common relevant signal processing steps and analysis.


2011 ◽  
Vol 71-78 ◽  
pp. 4564-4567
Author(s):  
Ai Jun Hu ◽  
Jing Jing Sun ◽  
Wan Li Ma

The morphological filter as a nonlinear filtering method has been widely used for image (or signal) processing. Unlike the traditional digital filters, mathematical morphological operations are shape-based computing. Feature extraction of signals is entirely in the time domain without the transforming of the signal from the time domain to frequency domain. The vibration signal contaminated with noise is processed using morphological filter and Butterworth filter respectively. To compare the outputs of the two filters, we find that morphological filter shows better performance. It is effective in suppressing noise while maintaining the original signal both in the time and frequency domain. In addition, an outstanding advantage of morphological filter is its ability to keep the phase of the original signal. Its computing speed is faster. In the end, its low-pass characteristic is verified by processing vibration signal.


2009 ◽  
pp. 53-68
Author(s):  
Terrence D. Lagerlund

This chapter reviews the principles of digitization, the design of digitally based instruments for clinical neurophysiology, and several common uses of digital processing, including averaging, digital filtering, and some types of time-domain and frequency-domain analysis. An understanding of these principles is necessary to select and use digitally based instruments appropriately and to understand their unique features.


Engineering ◽  
2013 ◽  
Vol 05 (05) ◽  
pp. 31-36 ◽  
Author(s):  
Kim Mey Chew ◽  
Rubita Sudirman ◽  
Nasrul Humaimi Mahmood ◽  
Norhudah Seman ◽  
Ching Yee Yong

2018 ◽  
Vol 12 (7-8) ◽  
pp. 76-83
Author(s):  
E. V. KARSHAKOV ◽  
J. MOILANEN

Тhe advantage of combine processing of frequency domain and time domain data provided by the EQUATOR system is discussed. The heliborne complex has a towed transmitter, and, raised above it on the same cable a towed receiver. The excitation signal contains both pulsed and harmonic components. In fact, there are two independent transmitters operate in the system: one of them is a normal pulsed domain transmitter, with a half-sinusoidal pulse and a small "cut" on the falling edge, and the other one is a classical frequency domain transmitter at several specially selected frequencies. The received signal is first processed to a direct Fourier transform with high Q-factor detection at all significant frequencies. After that, in the spectral region, operations of converting the spectra of two sounding signals to a single spectrum of an ideal transmitter are performed. Than we do an inverse Fourier transform and return to the time domain. The detection of spectral components is done at a frequency band of several Hz, the receiver has the ability to perfectly suppress all sorts of extra-band noise. The detection bandwidth is several dozen times less the frequency interval between the harmonics, it turns out thatto achieve the same measurement quality of ground response without using out-of-band suppression you need several dozen times higher moment of airborne transmitting system. The data obtained from the model of a homogeneous half-space, a two-layered model, and a model of a horizontally layered medium is considered. A time-domain data makes it easier to detect a conductor in a relative insulator at greater depths. The data in the frequency domain gives more detailed information about subsurface. These conclusions are illustrated by the example of processing the survey data of the Republic of Rwanda in 2017. The simultaneous inversion of data in frequency domain and time domain can significantly improve the quality of interpretation.


Sign in / Sign up

Export Citation Format

Share Document