Escape conditioning in the leech hirudo medicinal is as a model for the study of the cellular mechanisms of associative learning

1986 ◽  
Vol 20 (1) ◽  
pp. 108 ◽  
Author(s):  
G. István ◽  
M. Brunelli ◽  
F. Cilotti
1990 ◽  
Vol 329 (1253) ◽  
pp. 171-178 ◽  

A complete understanding of the cellular mechanisms underlying the formation of associations between stimuli, as occurs during classical conditioning, requires an understanding of the non-associative effects of the individual stimuli. The siphon withdrawal reflex of Aplysia exhibits both non-associative and associative learning when a tactile stimulus to the siphon serves as a conditioned stimulus, and tail shock serves as an unconditioned stimulus. In this chapter we describe experiments which examine the non- associative effects of tail shock at three different levels of analysis. At a behavioural level we found that the magnitude, and even the sign of reflex modulation induced by tail shock depended critically on three parameters: (i) the state of the reflex (habituated or non- habituated); (ii) the strength of the tail shock, and (iii) the time of testing after tail shock. Specifically, when non-habituated responses produced by water jet stimuli to the siphon were examined, tail shock produced transient inhibition 90 s later; facilitation of non-habituated responses (sensitization) only emerged after a considerable delay of 20—30 min. When habituated responses were examined, tail shock produced immediate facilitation (dishabituation); the amount of facilitation was inversely related to the strength of tail shock, with stronger shock producing no dishabituation. At a cellular level it was found that the complex excitatory postsynaptic potential (EPSP) in siphon motor neurons produced by water jet stimuli to the siphon provides a reliable cellular correlate of several of the non-associative effects of tail shock that we observe behaviourally. When non-decremented complex EPSPs were examined, strong tail shock produced transient inhibition at a test 90 s after shock. When decremented complex EPSPs were examined, weak tail shock produced immediate facilitation whereas strong shock produced no facilitation. Moreover, in these experiments tail shock had differential effects on the complex and monosynaptic inputs to siphon motor neurons, suggesting that in addition to the well-studied monosynaptic input, other elements in the neural circuit for siphon withdrawal may contribute to the modulation induced by tail shock. At a pharmacological level we found that the neuromodulator serotonin could reliably mimic some of the effects of tail shock. Specifically, brief application of serotonin produced transient inhibition of both the siphon withdrawal reflex and of nerve shock elicited complex EPSPs in siphon motor neurons. Interestingly, serotonin simultaneously produced facilitation of the monosynaptic connection from sensory to motor neurons. This dissociation in the effects of serotonin on complex and monosynaptic EPSPs suggests that serotonin may act at multiple synaptic loci to produce the net inhibition in complex synaptic input. Taken collectively, these results suggest that the diverse behavioural effects of tail shock may be mediated by modulation at multiple sites in the neural circuit for siphon withdrawal. Understanding the cellular mechanisms that underlie these diverse non-associative effects of tail shock will be important in formulating comprehensive cellular models of associative learning in this reflex system.


2007 ◽  
Vol 43 ◽  
pp. 105-120 ◽  
Author(s):  
Michael L. Paffett ◽  
Benjimen R. Walker

Several molecular and cellular adaptive mechanisms to hypoxia exist within the vasculature. Many of these processes involve oxygen sensing which is transduced into mediators of vasoconstriction in the pulmonary circulation and vasodilation in the systemic circulation. A variety of oxygen-responsive pathways, such as HIF (hypoxia-inducible factor)-1 and HOs (haem oxygenases), contribute to the overall adaptive process during hypoxia and are currently an area of intense research. Generation of ROS (reactive oxygen species) may also differentially regulate vascular tone in these circulations. Potential candidates underlying the divergent responses between the systemic and pulmonary circulations may include Nox (NADPH oxidase)-derived ROS and mitochondrial-derived ROS. In addition to alterations in ROS production governing vascular tone in the hypoxic setting, other vascular adaptations are likely to be involved. HPV (hypoxic pulmonary vasoconstriction) and CH (chronic hypoxia)-induced alterations in cellular proliferation, ionic conductances and changes in the contractile apparatus sensitivity to calcium, all occur as adaptive processes within the vasculature.


2020 ◽  
Vol 134 (12) ◽  
pp. 1403-1432 ◽  
Author(s):  
Manal Muin Fardoun ◽  
Dina Maaliki ◽  
Nabil Halabi ◽  
Rabah Iratni ◽  
Alessandra Bitto ◽  
...  

Abstract Flavonoids are polyphenolic compounds naturally occurring in fruits and vegetables, in addition to beverages such as tea and coffee. Flavonoids are emerging as potent therapeutic agents for cardiovascular as well as metabolic diseases. Several studies corroborated an inverse relationship between flavonoid consumption and cardiovascular disease (CVD) or adipose tissue inflammation (ATI). Flavonoids exert their anti-atherogenic effects by increasing nitric oxide (NO), reducing reactive oxygen species (ROS), and decreasing pro-inflammatory cytokines. In addition, flavonoids alleviate ATI by decreasing triglyceride and cholesterol levels, as well as by attenuating inflammatory mediators. Furthermore, flavonoids inhibit synthesis of fatty acids and promote their oxidation. In this review, we discuss the effect of the main classes of flavonoids, namely flavones, flavonols, flavanols, flavanones, anthocyanins, and isoflavones, on atherosclerosis and ATI. In addition, we dissect the underlying molecular and cellular mechanisms of action for these flavonoids. We conclude by supporting the potential benefit for flavonoids in the management or treatment of CVD; yet, we call for more robust clinical studies for safety and pharmacokinetic values.


Author(s):  
Tom Beckers ◽  
Uschi Van den Broeck ◽  
Marij Renne ◽  
Stefaan Vandorpe ◽  
Jan De Houwer ◽  
...  

Abstract. In a contingency learning task, 4-year-old and 8-year-old children had to predict the outcome displayed on the back of a card on the basis of cues presented on the front. The task was embedded in either a causal or a merely predictive scenario. Within this task, either a forward blocking or a backward blocking procedure was implemented. Blocking occurred in the causal but not in the predictive scenario. Moreover, blocking was affected by the scenario to the same extent in both age groups. The pattern of results was similar for forward and backward blocking. These results suggest that even young children are sensitive to the causal structure of a contingency learning task and that the occurrence of blocking in such a task defies an explanation in terms of associative learning theory.


2014 ◽  
Vol 222 (3) ◽  
pp. 148-153 ◽  
Author(s):  
Sabine Vits ◽  
Manfred Schedlowski

Associative learning processes are one of the major neuropsychological mechanisms steering the placebo response in different physiological systems and end organ functions. Learned placebo effects on immune functions are based on the bidirectional communication between the central nervous system (CNS) and the peripheral immune system. Based on this “hardware,” experimental evidence in animals and humans showed that humoral and cellular immune functions can be affected by behavioral conditioning processes. We will first highlight and summarize data documenting the variety of experimental approaches conditioning protocols employed, affecting different immunological functions by associative learning. Taking a well-established paradigm employing a conditioned taste aversion model in rats with the immunosuppressive drug cyclosporine A (CsA) as an unconditioned stimulus (US) as an example, we will then summarize the efferent and afferent communication pathways as well as central processes activated during a learned immunosuppression. In addition, the potential clinical relevance of learned placebo effects on the outcome of immune-related diseases has been demonstrated in a number of different clinical conditions in rodents. More importantly, the learned immunosuppression is not restricted to experimental animals but can be also induced in humans. These data so far show that (i) behavioral conditioned immunosuppression is not limited to a single event but can be reproduced over time, (ii) immunosuppression cannot be induced by mere expectation, (iii) psychological and biological variables can be identified as predictors for this learned immunosuppression. Together with experimental approaches employing a placebo-controlled dose reduction these data provide a basis for new therapeutic approaches to the treatment of diseases where a suppression of immune functions is required via modulation of nervous system-immune system communication by learned placebo effects.


Sign in / Sign up

Export Citation Format

Share Document