An antigenic determinant common to both mouse red blood cells and several membrane proteins of the parasitic protozoa Babesia rodhaini

1986 ◽  
Vol 20 (1) ◽  
pp. 101-109 ◽  
Author(s):  
David Snary ◽  
Michael A. Smith
Blood ◽  
1995 ◽  
Vol 86 (5) ◽  
pp. 1992-1998 ◽  
Author(s):  
OS Platt ◽  
JF Falcone

The pattern of membrane abnormalities in sickle red blood cells suggests that sickle hemoglobin damages membrane proteins. We have previously shown a functional defect in sickle ankyrin, poor spectrin- binding ability. Here we examine the other major binding interactions of sickle membrane proteins including spectrin self-association, binding of ankyrin and protein 4.1 to protein 3, and the formation of the spectrin-actin-protein 4.1 complex. We found that sickle spectrin was normal in self-association and ability to participate in the spectrin-actin-protein 4.1 complex. Sickle protein 4.1 bound normally to protein 3 and formed normal complexes with actin and spectrin, even when sickle spectrin was used. The only major abnormality we found was a reduced ability of sickle protein 3 to bind ankyrin. This functional defect could not be explained experimentally on the basis of cysteine modification or enhanced tyrosine phosphorylation. We conclude that damage of sickle membrane proteins is not a diffuse scattershot process, but is largely confined to regions near membrane-associated hemoglobin, the spectrin-binding domain of ankyrin and the ankyrin- binding domain of protein 3. The mechanism and consequences of this damage continues to be investigated.


Blood ◽  
1993 ◽  
Vol 82 (2) ◽  
pp. 669-676 ◽  
Author(s):  
P Hermand ◽  
I Mouro ◽  
M Huet ◽  
C Bloy ◽  
K Suyama ◽  
...  

Rabbit polyclonal antibodies were raised against synthetic peptides corresponding to hydrophilic regions of the human Rhesus (Rh) IX cDNA- encoded polypeptide predicted to be extracellularly or intracellularly exposed in the topologic model of the Rh blood group protein. Four antibodies encompassing residues 33–45 (MPC1), 224–233 (MPC4), 390–404 (MPC6), and 408–416 (MPC8) were characterized and compared with a polyclonal anti-Rh protein obtained by immunization with purified Rh proteins. All antibodies had specificity for authentic Rh polypeptides and reacted on Western blot with Rh proteins immunoprecipitated with human monoclonal anti-RhD, -c, and -E. MPC1, but not the other antibodies, agglutinated all human erythrocytes except Rhnull and Rhmod cells, which either lack totally or are severely deficient in Rh proteins, respectively. Immunoblotting analysis with membrane proteins from common and rare variants showed that MPC1 and MPC8 reacted in Western blot with 32-Kd Rh polypeptides from all common red blood cells except those from Rhnull and Rhmod, indicating that peptide regions 33– 45 and 408–416 may be common to several if not all Rh proteins, whatever the Rh blood group specificity. MPC4 reacted only with membrane preparations from cells carrying the E antigen, whereas MPC6 recognized preferentially the Rh proteins from E and Ee preparations, suggesting that the protein encoded by the RhIXb cDNA carries the E and/or e antigen(s). Immunoadsorption experiments using inside-out or right-side-out sealed vesicules from DccEE red blood cells as competing antigen showed that the MPC6 and MPC8 antibodies bound only to the cytoplasmic side of the erythrocyte membrane, thus providing evidence for the intracellular orientation of the C-terminal 27 residues of the Rh polypeptides. Attempts to transiently or stably express the Rh polypeptides. Attempts to transiently or stably express the Rh cDNA in eukaryotic cells were largely unsuccessful, suggesting that Rh antigen expression at the cell surface requires correct transport and/or folding of the Rh proteins, possibly as a complex with one-membrane proteins of the Rh cluster that are lacking in Rhnull cells.


Blood ◽  
1993 ◽  
Vol 82 (2) ◽  
pp. 669-676 ◽  
Author(s):  
P Hermand ◽  
I Mouro ◽  
M Huet ◽  
C Bloy ◽  
K Suyama ◽  
...  

Abstract Rabbit polyclonal antibodies were raised against synthetic peptides corresponding to hydrophilic regions of the human Rhesus (Rh) IX cDNA- encoded polypeptide predicted to be extracellularly or intracellularly exposed in the topologic model of the Rh blood group protein. Four antibodies encompassing residues 33–45 (MPC1), 224–233 (MPC4), 390–404 (MPC6), and 408–416 (MPC8) were characterized and compared with a polyclonal anti-Rh protein obtained by immunization with purified Rh proteins. All antibodies had specificity for authentic Rh polypeptides and reacted on Western blot with Rh proteins immunoprecipitated with human monoclonal anti-RhD, -c, and -E. MPC1, but not the other antibodies, agglutinated all human erythrocytes except Rhnull and Rhmod cells, which either lack totally or are severely deficient in Rh proteins, respectively. Immunoblotting analysis with membrane proteins from common and rare variants showed that MPC1 and MPC8 reacted in Western blot with 32-Kd Rh polypeptides from all common red blood cells except those from Rhnull and Rhmod, indicating that peptide regions 33– 45 and 408–416 may be common to several if not all Rh proteins, whatever the Rh blood group specificity. MPC4 reacted only with membrane preparations from cells carrying the E antigen, whereas MPC6 recognized preferentially the Rh proteins from E and Ee preparations, suggesting that the protein encoded by the RhIXb cDNA carries the E and/or e antigen(s). Immunoadsorption experiments using inside-out or right-side-out sealed vesicules from DccEE red blood cells as competing antigen showed that the MPC6 and MPC8 antibodies bound only to the cytoplasmic side of the erythrocyte membrane, thus providing evidence for the intracellular orientation of the C-terminal 27 residues of the Rh polypeptides. Attempts to transiently or stably express the Rh polypeptides. Attempts to transiently or stably express the Rh cDNA in eukaryotic cells were largely unsuccessful, suggesting that Rh antigen expression at the cell surface requires correct transport and/or folding of the Rh proteins, possibly as a complex with one-membrane proteins of the Rh cluster that are lacking in Rhnull cells.


1986 ◽  
Vol 103 (3) ◽  
pp. 819-828 ◽  
Author(s):  
D E Golan ◽  
C S Brown ◽  
C M Cianci ◽  
S T Furlong ◽  
J P Caulfield

Human red blood cells (RBCs) adhere to and are lysed by schistosomula of Schistosoma mansoni. We have investigated the mechanism of RBC lysis by comparing the dynamic properties of transmembrane protein and lipid probes in adherent ghost membranes with those in control RBCs and in RBCs treated with various membrane perturbants. Fluorescence photobleaching recovery was used to measure the lateral mobility of two integral membrane proteins, glycophorin and band 3, and two lipid analogues, fluorescein phosphatidylethanolamine (Fl-PE) and carbocyanine dyes, in RBCs and ghosts adherent to schistosomula. Adherent ghosts manifested 95-100% immobilization of both membrane proteins and 45-55% immobilization of both lipid probes. In separate experiments, diamide-induced cross-linking of RBC cytoskeletal proteins slowed transmembrane protein diffusion by 30-40%, without affecting either transmembrane protein fractional mobility or lipid probe lateral mobility. Wheat germ agglutinin- and polylysine-induced cross-linking of glycophorin at the extracellular surface caused 80-95% immobilization of the transmembrane proteins, without affecting the fractional mobility of the lipid probe. Egg lysophosphatidylcholine (lysoPC) induced both lysis of RBCs and a concentration-dependent decrease in the lateral mobility of glycophorin, band 3, and Fl-PE in ghost membranes. At a concentration of 8.4 micrograms/ml, lysoPC caused a pattern of protein and lipid immobilization in RBC ghosts identical to that in ghosts adherent to schistosomula. Schistosomula incubated with labeled palmitate released lysoPC into the culture medium at a rate of 1.5 fmol/h per 10(3) organisms. These data suggest that lysoPC is transferred from schistosomula to adherent RBCs, causing their lysis.


Sign in / Sign up

Export Citation Format

Share Document