protein 4.1
Recently Published Documents


TOTAL DOCUMENTS

316
(FIVE YEARS 11)

H-INDEX

58
(FIVE YEARS 1)

2022 ◽  
Vol 12 ◽  
Author(s):  
Luis F. Delgadillo ◽  
Yu Shan Huang ◽  
Sami Leon ◽  
James Palis ◽  
Richard E. Waugh

The combined use of fluorescence labeling and micro-manipulation of red blood cells has proven to be a powerful tool for understanding and characterizing fundamental mechanisms underlying the mechanical behavior of cells. Here we used this approach to study the development of the membrane-associated cytoskeleton (MAS) in primary embryonic erythroid cells. Erythropoiesis comes in two forms in the mammalian embryo, primitive and definitive, characterized by intra- and extra-vascular maturation, respectively. Primitive erythroid precursors in the murine embryo first begin to circulate at embryonic day (E) 8.25 and mature as a semi-synchronous cohort before enucleating between E12.5 and E16.5. Previously, we determined that the major components of the MAS become localized to the membrane between E10.5 and E12.5, and that this localization is associated with an increase in membrane mechanical stability over this same period. The change in mechanical stability was reflected in the creation of MAS-free regions of the membrane at the tips of the projections formed when cells were aspirated into micropipettes. The tendency to form MAS-free regions decreases as primitive erythroid cells continue to mature through E14.5, at least 2 days after all detectable cytoskeletal components are localized to the membrane, indicating continued strengthening of membrane cohesion after membrane localization of cytoskeletal components. Here we demonstrate that the formation of MAS-free regions is the result of a mechanical failure within the MAS, and not the detachment of membrane bilayer from the MAS. Once a “hole” is formed in the MAS, the skeletal network contracts laterally along the aspirated projection to form the MAS-free region. In protein 4.1-null primitive erythroid cells, the tendency to form MAS-free regions is markedly enhanced. Of note, similar MAS-free regions were observed in maturing erythroid cells from human marrow, indicating that similar processes occur in definitive erythroid cells. We conclude that localization of cytoskeletal components to the cell membrane of mammalian erythroid cells during maturation is insufficient by itself to produce a mature MAS, but that subsequent processes are additionally required to strengthen intraskeletal interactions.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Takashi Asaeda ◽  
Mizanur Rahman ◽  
Helayaye Damitha Lakmali Abeynayaka

AbstractThe effect of combined stresses, photoinhibition, and nutrient depletion on the oxidative stress of cyanobacteria was measured in laboratory experiments to develop the biomass prediction model. Phormidium ambiguum was exposed to various photosynthetically active radiation (PAR) intensities and phosphorous (P) concentrations with fixed nitrogen concentrations. The samples were subjected to stress assays by detecting the hydrogen peroxide (H2O2) concentration and antioxidant activities of catalase (CAT) and superoxide dismutase (SOD). H2O2 concentrations decreased to 30 µmol m−2 s−1 of PAR, then increased with higher PAR intensities. Regarding P concentrations, H2O2 concentrations (nmol L−1) generally decreased with increasing P concentrations. SOD and CAT activities were proportionate to the H2O2 protein−1. No H2O2 concentrations detected outside cells indicated the biological production of H2O2, and the accumulated H2O2 concentration inside cells was parameterized with H2O2 concentration protein−1. With over 30 µmol m−2 s−1 of PAR, H2O2 concentration protein−1 had a similar increasing trend with PAR intensity, independently of P concentration. Meanwhile, with increasing P concentration, H2O2 protein−1 decreased in a similar pattern regardless of PAR intensity. Protein content decreased with gradually increasing H2O2 up to 4 nmol H2O2 mg−1 protein, which provides a threshold to restrict the growth of cyanobacteria. With these results, an empirical formula—protein (mg L−1) = − 192*Log((H2O2/protein)/4.1), where H2O2/protein (nmol mg−1) = − 0.312*PAR2/(502 + PAR2)*((25/PAR)4 + 1)*Log(P/133,100), as a function of total phosphorus concentration, P (µg L−1)—was developed to obtain the cyanobacteria biomass.


2021 ◽  
Vol 123 (6) ◽  
pp. 151748
Author(s):  
Shuwei Ning ◽  
Lei Hua ◽  
Zhenyu Ji ◽  
Dandan Fan ◽  
Xiangguang Meng ◽  
...  

2020 ◽  
Vol 4 (13) ◽  
pp. 3128-3135 ◽  
Author(s):  
Jiaojiao Sun ◽  
Desheng Xiao ◽  
Yuan Ni ◽  
Tianlong Zhang ◽  
Zhongyuan Cao ◽  
...  

Abstract Kindlin-3, a protein 4.1, ezrin, radixin, and moesin (FERM) domain–containing adaptor in hematopoietic cells, is essentially required for supporting the bidirectional integrin αIIbβ3 signaling in platelets by binding to the integrin β3 cytoplasmic tail. However, the structural details of kindlin-3’s FERM domain remain unknown. In this study, we crystalized the kindlin-3’s FERM domain protein and successfully solved its 3-dimensional structure. The structure shows that the 3 kindlin-3’s FERM subdomains (F1, F2, and F3) compact together and form a cloverleaf-shaped conformation, which is stabilized by the binding interface between the F1 and F3 subdomains. Interestingly, the FERM domain of kindlin-3 exists as a monomer in both crystal and solution, which is different from its counterpart in kindlin-2 that is able to form a F2 subdomain-swapped dimer; nonetheless, dimerization is required for kindlin-3 to support integrin αIIbβ3 activation, indicating that kindlin-3 may use alternative mechanisms for formation of a functional dimer in cells. To evaluate the functional importance of the cloverleaf-like FERM structure in kindlin-3, structure-based mutations were introduced into kindlin-3 to disrupt the F1/F3 interface. The results show that integrin αIIbβ3 activation is significantly suppressed in platelets expressing the kindlin-3 mutant compared with those expressing wild-type kindlin-3. In addition, introduction of equivalent mutations into kindlin-1 and kindlin-2 also significantly compromises their ability to support integrin αIIbβ3 activation in CHO cells. Together, our findings suggest that the cloverleaf-like FERM domain in kindlins is structurally important for supporting integrin αIIbβ3 activation.


2019 ◽  
Vol 3 (17) ◽  
pp. 2586-2597 ◽  
Author(s):  
Timothy J. McMahon ◽  
Siqing Shan ◽  
Daniel A. Riccio ◽  
Milena Batchvarova ◽  
Hongmei Zhu ◽  
...  

Abstract Sickle red blood cells (SSRBCs) are adherent to the endothelium, activate leukocyte adhesion, and are deficient in bioactive nitric oxide (NO) adducts such as S-nitrosothiols (SNOs), with reduced ability to induce vasodilation in response to hypoxia. All these pathophysiologic characteristics promote vascular occlusion, the hallmark of sickle cell disease (SCD). Loading hypoxic SSRBCs in vitro with NO followed by reoxygenation significantly decreased epinephrine-activated SSRBC adhesion to the endothelium, the ability of activated SSRBCs to mediate leukocyte adhesion in vitro, and vessel obstruction in vivo. Because transfusion is frequently used in SCD, we also determined the effects of banked (SNO-depleted) red blood cells (RBCs) on vaso-occlusion in vivo. Fresh or 14-day-old normal RBCs (AARBCs) reduced epinephrine-activated SSRBC adhesion to the vascular endothelium and prevented vaso-occlusion. In contrast, AARBCs stored for 30 days failed to decrease activated SSRBC adhesivity or vaso-occlusion, unless these RBCs were loaded with NO. Furthermore, NO loading of SSRBCs increased S-nitrosohemoglobin and modulated epinephrine’s effect by upregulating phosphorylation of membrane proteins, including pyruvate kinase, E3 ubiquitin ligase, and the cytoskeletal protein 4.1. Thus, abnormal SSRBC NO/SNO content both contributes to the vaso-occlusive pathophysiology of SCD, potentially by affecting at least protein phosphorylation, and is potentially amenable to correction by (S)NO repletion or by RBC transfusion.


Sign in / Sign up

Export Citation Format

Share Document