Chromatin structure of the 87A7 heat-shock locus during heat induction and recovery from heat shock

Author(s):  
Stella Han ◽  
Andor Udvardy ◽  
Paul Schedl
1993 ◽  
Vol 13 (12) ◽  
pp. 7522-7530 ◽  
Author(s):  
A Udvardy ◽  
P Schedl

We have examined the in vivo sites of action for topoisomerases II in the 87A7 heat shock locus as a function of gene activity. When the hsp70 genes are induced, there is a dramatic redistribution of topoisomerase II in the locus which parallels many of the observed alterations in chromatin structure. In addition to changes in the topoisomerase II distribution within the locus, we find topoisomerase II localized around the putative domain boundaries scs and scs'. During recovery, when the chromatin fiber of the locus recondenses, the major sites of action for topoisomerase II appear to be located within the two hsp70 genes and in the intergenic spacer separating the two genes.


1993 ◽  
Vol 13 (12) ◽  
pp. 7522-7530
Author(s):  
A Udvardy ◽  
P Schedl

We have examined the in vivo sites of action for topoisomerases II in the 87A7 heat shock locus as a function of gene activity. When the hsp70 genes are induced, there is a dramatic redistribution of topoisomerase II in the locus which parallels many of the observed alterations in chromatin structure. In addition to changes in the topoisomerase II distribution within the locus, we find topoisomerase II localized around the putative domain boundaries scs and scs'. During recovery, when the chromatin fiber of the locus recondenses, the major sites of action for topoisomerase II appear to be located within the two hsp70 genes and in the intergenic spacer separating the two genes.


Genetics ◽  
1984 ◽  
Vol 106 (2) ◽  
pp. 249-265
Author(s):  
Jym Mohler ◽  
Mary Lou Pardue

ABSTRACT The region containing subdivisions 93C, 93D and 93E on chromosome 3 of Drosophila melanogaster has been screened for visible and lethal mutations. Treatment with three mutagens, γ irradiation, ethyl methanesulfonate and diepoxybutane, has produced mutations that fall into 20 complementation groups, including the previously identified ebony locus. No point mutations affecting the heat shock locus in 93D were detected; however, a pair of deficiencies that overlap in the region of this locus was isolated. Flies heterozygous in trans for this pair of deficiencies are capable of producing all of the major heat shock puffs (except 93D) and the major heat shock proteins. In addition, these flies show recovery of normal protein synthesis following a heat shock.


1993 ◽  
Vol 13 (5) ◽  
pp. 2802-2814
Author(s):  
Q Lu ◽  
L L Wallrath ◽  
H Granok ◽  
S C Elgin

Previous analysis of the hsp26 gene of Drosophila melanogaster has shown that in addition to the TATA box and the proximal and distal heat shock elements (HSEs) (centered at -59 and -340, relative to the start site of transcription), a segment of (CT)n repeats at -135 to -85 is required for full heat shock inducibility (R.L. Glaser, G.H. Thomas, E.S. Siegfried, S.C.R. Elgin, and J.T. Lis, J. Mol. Biol. 211:751-761, 1990). This (CT)n element appears to contribute to formation of the wild-type chromatin structure of hsp26, an organized nucleosome array that leaves the HSEs in nucleosome-free, DNase I-hypersensitive (DH) sites (Q. Lu, L.L. Wallrath, B.D. Allan, R.L. Glaser, J.T. Lis, and S.C.R. Elgin, J. Mol. Biol. 225:985-998, 1992). Inspection of the sequences upstream of hsp26 has revealed an additional (CT)n element at -347 to -341, adjacent to the distal HSE. We have analyzed the contribution of this distal (CT)n element (-347 to -341), the proximal (CT)n element (-135 to -85), and the two HSEs both to the formation of the chromatin structure and to heat shock inducibility. hsp26 constructs containing site-directed mutations, deletions, substitutions, or rearrangements of these sequence elements have been fused in frame to the Escherichia coli lacZ gene and reintroduced into the D. melanogaster genome by P-element-mediated germ line transformation. Chromatin structure of the transgenes was analyzed (prior to gene activation) by DNase I or restriction enzyme treatment of isolated nuclei, and heat-inducible expression was monitored by measuring beta-galactosidase activity. The results indicate that mutations, deletions, or substitutions of either the distal or the proximal (CT)n element affect the chromatin structure and heat-inducible expression of the transgenes. These (CT)n repeats are associated with a nonhistone protein(s) in vivo and are bound by a purified Drosophila protein, the GAGA factor, in vitro. In contrast, the HSEs are required for heat-inducible expression but play only a minor role in establishing the chromatin structure of the transgenes. Previous analysis indicates that prior to heat shock, these HSEs appear to be free of protein. Our results suggest that GAGA factor, an abundant protein factor required for normal expression of many Drosophila genes, and heat shock factor, a specific transcription factor activated upon heat shock, play distinct roles in gene regulation: the GAGA factor establishes and/or maintains the DH sites prior to heat shock induction, while the activated heat shock factor recognizes and binds HSEs located within the DH sites to trigger transcription.


Chromosoma ◽  
1982 ◽  
Vol 86 (4) ◽  
pp. 457-467 ◽  
Author(s):  
Jym Mohler ◽  
Mary Lou Pardue

1982 ◽  
Vol 155 (3) ◽  
pp. 267-280 ◽  
Author(s):  
Andor Udvardy ◽  
János Sümegi ◽  
Éva Csordás Tóth ◽  
János Gausz ◽  
Henrik Gyurkovics ◽  
...  

1993 ◽  
Vol 13 (5) ◽  
pp. 2802-2814 ◽  
Author(s):  
Q Lu ◽  
L L Wallrath ◽  
H Granok ◽  
S C Elgin

Previous analysis of the hsp26 gene of Drosophila melanogaster has shown that in addition to the TATA box and the proximal and distal heat shock elements (HSEs) (centered at -59 and -340, relative to the start site of transcription), a segment of (CT)n repeats at -135 to -85 is required for full heat shock inducibility (R.L. Glaser, G.H. Thomas, E.S. Siegfried, S.C.R. Elgin, and J.T. Lis, J. Mol. Biol. 211:751-761, 1990). This (CT)n element appears to contribute to formation of the wild-type chromatin structure of hsp26, an organized nucleosome array that leaves the HSEs in nucleosome-free, DNase I-hypersensitive (DH) sites (Q. Lu, L.L. Wallrath, B.D. Allan, R.L. Glaser, J.T. Lis, and S.C.R. Elgin, J. Mol. Biol. 225:985-998, 1992). Inspection of the sequences upstream of hsp26 has revealed an additional (CT)n element at -347 to -341, adjacent to the distal HSE. We have analyzed the contribution of this distal (CT)n element (-347 to -341), the proximal (CT)n element (-135 to -85), and the two HSEs both to the formation of the chromatin structure and to heat shock inducibility. hsp26 constructs containing site-directed mutations, deletions, substitutions, or rearrangements of these sequence elements have been fused in frame to the Escherichia coli lacZ gene and reintroduced into the D. melanogaster genome by P-element-mediated germ line transformation. Chromatin structure of the transgenes was analyzed (prior to gene activation) by DNase I or restriction enzyme treatment of isolated nuclei, and heat-inducible expression was monitored by measuring beta-galactosidase activity. The results indicate that mutations, deletions, or substitutions of either the distal or the proximal (CT)n element affect the chromatin structure and heat-inducible expression of the transgenes. These (CT)n repeats are associated with a nonhistone protein(s) in vivo and are bound by a purified Drosophila protein, the GAGA factor, in vitro. In contrast, the HSEs are required for heat-inducible expression but play only a minor role in establishing the chromatin structure of the transgenes. Previous analysis indicates that prior to heat shock, these HSEs appear to be free of protein. Our results suggest that GAGA factor, an abundant protein factor required for normal expression of many Drosophila genes, and heat shock factor, a specific transcription factor activated upon heat shock, play distinct roles in gene regulation: the GAGA factor establishes and/or maintains the DH sites prior to heat shock induction, while the activated heat shock factor recognizes and binds HSEs located within the DH sites to trigger transcription.


1989 ◽  
Vol 9 (9) ◽  
pp. 3888-3896
Author(s):  
V Mezger ◽  
O Bensaude ◽  
M Morange

In contrast to differentiated somatic cells, mouse embryonal carcinoma (EC) cell lines spontaneously express high levels of major members of the heat shock protein (HSP) family. In addition, some EC cell lines (noninducible) are not able to induce HSP gene transcription and HSP synthesis after a stress. However, after in vitro differentiation, constitutive HSP expression decreases and the differentiated derivatives become able to induce HSP gene transcription after a stress. These cells were tested by gel shift assays for the presence of an activity able to bind the heat shock element (HSE) before and after a stress. Control fibroblasts grown at 37 degrees C did not contain significant levels of HSE-binding activity, but heat shock dramatically increased the level of HSE-binding activity. In contrast to control fibroblasts, all EC cells contained significant levels of HSE-binding activity at 37 degrees C. In the inducible EC cell line F9, as in fibroblasts, heat shock strongly increased the level of HSE-binding activity. In the noninducible EC cells, however, HSE-binding activity markedly decreased upon heat shock. During in vitro differentiation of the noninducible cell line PCC7-S-1009, the constitutive HSE-binding activity found at 37 degrees C disappeared and heat induction of the HSE-binding activity appeared. Therefore, a good correlation exists between the high spontaneous expression of some members of the HSP family and the constitutive level of HSE-binding activity in EC cells at 37 degrees C. Heat induction of HSP gene transcription correlates with a strong increase in HSE-binding activity, whereas a deficiency in heat induction of HSP gene transcription is associated with a loss of HSE-binding activity upon heat shock.


Sign in / Sign up

Export Citation Format

Share Document