Extracellular cAMP formation from host cell ATP by Bordetella pertussis adenylate cyclase

Author(s):  
Fabrizio Gentile ◽  
Anastassios Raptis ◽  
Leslie G. Knipling ◽  
J. Wolff
1988 ◽  
Vol 971 (1) ◽  
pp. 63-71
Author(s):  
Fabrizio Gentile ◽  
Anastassios Raptis ◽  
Leslie G. Knipling ◽  
J. Wolff

1989 ◽  
Vol 262 (1) ◽  
pp. 25-31 ◽  
Author(s):  
A Gilboa-Ron ◽  
A Rogel ◽  
E Hanski

Bordetella pertussis produces a calmodulin-dependent adenylate cyclase (AC) which acts as a toxin capable of penetrating eukaryotic cells and generating high levels of intracellular cyclic AMP. Transfer of target cells into B. pertussis AC-free medium leads to a rapid decay in the intracellular AC activity, implying that the invasive enzyme is unstable in the host cytoplasm. We report here that treatment of human lymphocytes with a glycolysis inhibitor and an uncoupler of oxidative phosphorylation completely blocked the intracellular inactivation of B. pertussis AC. Lymphocyte lysates inactivated all forms of B. pertussis AC in the presence of exogenous ATP. This inactivation was associated with degradation of an 125I-labelled 200 kDa form of B. pertussis AC. It appears that ATP is required for the proteolytic pathway, but not as an energy source, since non-hydrolysable ATP analogues supported inactivation and complete degradation of the enzyme. The possibility that binding of ATP to B. pertussis AC renders it susceptible to degradation by the host cell protease is discussed.


1979 ◽  
Vol 254 (13) ◽  
pp. 5602-5605
Author(s):  
E L Hewlett ◽  
L H Underhill ◽  
G H Cook ◽  
C R Manclark ◽  
J Wolff

2016 ◽  
Vol 24 (1) ◽  
Author(s):  
Joshua C. Eby ◽  
Mary C. Gray ◽  
Jason M. Warfel ◽  
Tod J. Merkel ◽  
Erik L. Hewlett

ABSTRACT Adenylate cyclase toxin (ACT) is an essential virulence factor of Bordetella pertussis, and antibodies to ACT protect against B. pertussis infection in mice. The toxin is therefore a strong candidate antigen for addition to future acellular pertussis vaccines. In order to characterize the functionality of the immunologic response to ACT after infection, we developed an assay for testing the ability of serum samples from subjects infected with B. pertussis to neutralize ACT-induced cytotoxicity in J774 macrophage cells. Baboons develop neutralizing anti-ACT antibodies following infection with B. pertussis, and all sera from baboons with positive anti-ACT IgG enzyme-linked immunosorbent assay (ELISA) results neutralized ACT cytotoxicity. The toxin neutralization assay (TNA) was positive in some baboon sera in which ELISA remained negative. Of serum samples obtained from humans diagnosed with pertussis by PCR, anti-ACT IgG ELISA was positive in 72%, and TNA was positive in 83%. All samples positive for anti-ACT IgG ELISA were positive by TNA, and none of the samples from humans without pertussis neutralized toxin activity. These findings indicate that antibodies to ACT generated following infection with B. pertussis consistently neutralize toxin-induced cytotoxicity and that TNA can be used to improve understanding of the immunologic response to ACT after infection or vaccination.


Sign in / Sign up

Export Citation Format

Share Document