candidate antigen
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 16)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Jintao Zou ◽  
Haiming Jing ◽  
Xiaoli Zhang ◽  
Yiheng Liu ◽  
Zhuo Zhao ◽  
...  

The increase in confirmed COVID-19 cases and SARS-CoV-2 variants calls for the development of safe and broad cross-protective vaccines. The RBD of the spike protein was considered to be a safe and effective candidate antigen. However, the low immunogenicity limited its application in vaccine development. Herein, we designed and obtained an RBD heptamer (mHla-RBD) based on a carrier protein-aided assembly strategy. The molecular weight of mHla-RBD is up to 450 kDa, approximately 10 times higher than that of the RBD monomer. When formulated with alum adjuvant, mHla-RBD immunization significantly increased the immunogenicity of RBD, as indicated by increased titers of RBD-specific antibodies, neutralizing antibodies, Th2 cellular immune response, and pseudovirus neutralization activity, when compared to RBD monomer. Furthermore, we confirmed that RBD-specific antibodies predominantly target conformational epitopes, which was approximately 200 times that targeting linear epitopes. Finally, a pseudovirus neutralization assay revealed that neutralizing antibodies induced by mHla-RBD against different SARS-CoV-2 variants were comparable to those against the wild-type virus and showed broad-spectrum neutralizing activity toward different SARS-CoV-2 variants. Our results demonstrated that mHla-RBD is a promising candidate antigen for development of SARS-CoV-2 vaccines and the mHla could serve as a universal carrier protein for antigen design.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Naima G Sharaf ◽  
Mona Shahgholi ◽  
Esther Kim ◽  
Jeffrey Y Lai ◽  
David G VanderVelde ◽  
...  

NmMetQ is a substrate-binding protein (SBP) from Neisseria meningitidis that has been identified as a surface-exposed candidate antigen for meningococcal vaccines. However, this location for NmMetQ challenges the prevailing view that SBPs in Gram-negative bacteria are localized to the periplasmic space to promote interaction with their cognate ABC transporter embedded in the bacterial inner membrane. To elucidate the roles of NmMetQ, we characterized NmMetQ with and without its cognate ABC transporter (NmMetNI). Here, we show that NmMetQ is a lipoprotein (lipo-NmMetQ) that binds multiple methionine analogs and stimulates the ATPase activity of NmMetNI. Using single-particle electron cryo-microscopy, we determined the structures of NmMetNI in the presence and absence of lipo-NmMetQ. Based on our data, we propose that NmMetQ tethers to membranes via a lipid anchor and has dual function and localization, playing a role in NmMetNI-mediated transport at the inner membrane and moonlighting on the bacterial surface.


2021 ◽  
Vol 17 (7) ◽  
pp. e1009752
Author(s):  
Jin-Tao Zou ◽  
Hai-Ming Jing ◽  
Yue Yuan ◽  
Lang-Huan Lei ◽  
Zhi-Fu Chen ◽  
...  

Highly immunogenic exotoxins are used as carrier proteins because they efficiently improve the immunogenicity of polysaccharides. However, their efficiency with protein antigens remains unclear. In the current study, the candidate antigen PA0833 from Pseudomonas aeruginosa was fused to the α-hemolysin mutant HlaH35A from Staphylococcus aureus to form a HlaH35A-PA0833 fusion protein (HPF). Immunization with HPF resulted in increased PA0833-specific antibody titers, higher protective efficacy, and decreased bacterial burden and pro-inflammatory cytokine secretion compared with PA0833 immunization alone. Using fluorescently labeled antigens to track antigen uptake and delivery, we found that HlaH35A fusion significantly improved antigen uptake in injected muscles and antigen delivery to draining lymph nodes. Both in vivo and in vitro studies demonstrated that the increased antigen uptake after immunization with HPF was mainly due to monocyte- and macrophage-dependent macropinocytosis, which was probably the result of HPF binding to ADAM10, the Hla host receptor. Furthermore, a transcriptome analysis showed that several immune signaling pathways were activated by HPF, shedding light on the mechanism whereby HlaH35A fusion improves immunogenicity. Finally, the improvement in immunogenicity by HlaH35A fusion was also confirmed with two other antigens, GlnH from Klebsiella pneumoniae and the model antigen OVA, indicating that HlaH35A could serve as a universal carrier protein to improve the immunogenicity of protein antigens.


Author(s):  
Bin Chang ◽  
Yuki Kinjo ◽  
Masatomo Morita ◽  
Kosuke Tamura ◽  
Hiroshi Watanabe ◽  
...  

Pneumococcal surface protein A (PspA) is a surface protein of Streptococcus pneumoniae that may be a candidate antigen for new pneumococcal vaccines. This study investigates the distribution of PspA clades of the causative strains of adult invasive pneumococcal disease (IPD) in Japan. Of the 1,939 strains isolated from cases of adult IPD during 2014–2019, the PspA clades of 1,932 (99.6%) strains were determined, and no pspA was detected in the remaining 7 strains (0.4%). PspA clades 1–6 were detected in 786 (40.5%), 291 (15.0%), 443 (22.8%), 369 (19.0%), 33 (1.7%), and 6 (0.3%) strains, respectively. New PspA clades (0.2%) were identified in two non-typeable and two serotype 35B pneumococci. The proportions of clade 1 and clade 2 showed significantly decreased and increased trends, respectively. Furthermore, the PspA clade of pneumococcal strains was partially serotype- and sequence type-dependent. The majority of strains belonging to serotypes contained in both the 13-valent pneumococcal conjugate vaccine (PCV13) and the 23-valent pneumococcal polysaccharide vaccine (PPSV23) belonged to PspA clades 1 or 3. In contrast, the distribution of clades in non-vaccine serotypes was wider than that of vaccine serotype pneumococci. Our findings demonstrate that almost all pneumococcal strains from adult IPD express PspA clades 1–4, especially for non-vaccine serotypes. These results may be useful for the development of a new pneumococcal vaccine with PspA.


Author(s):  
Cheng-Cheng ZHAI ◽  
Xiao-Lei LIU ◽  
Xue- BAI ◽  
Ze-Jun JIA ◽  
Shao-Hong CHEN ◽  
...  

Background: Trichinellosis is a serious food-borne parasitic zoonosis, thus finding high quality antigens is the key to serodiagnosis of trichinosis. This article reports the characterization and sensitivity of four recombinant proteins expressed by four genes (Wn10, Zh68, T668, and Wm5) from different developmental stages of Trichinella spiralis for the diagnosis of trichinellosis in mice. Methods: This study was conducted in Jilin University and National Institute of Parasitic Diseases of Chinese Center for Disease Control and Prevention in 2017-2018. The structures and functions of the proteins encoded by four genes were predicted by bioinformatics analysis. The four genes were cloned and expressed, and the recombinant proteins were purified. Anti-Trichinella IgM and IgG antibodies in the sera of mice infected with T. spiralis from 1-45 d post-infection (dpi) were evaluated by ELISA. Results: The optimal antigen epitopes of four proteins (P1, P2, P3, and P4) encoded by the four genes from T- and B-cells were predicted, and four purified recombinant proteins (r-P1, r-P2, r-P3, and r-P4) were successfully produced. For IgM, the antibody levels detected by the four recombinant antigens were approximately equal to the cut-off value. Anti-Trichinella IgG antibodies were first detected by r-P1 at 8 dpi, followed by r-P2, r-P3, and r-P4 at 10 dpi, 14 dpi, and 16 dpi, respectively, and the antibody levels remained high until 45 dpi. Conclusion: The recombinant antigens r-P1, r-P2, r-P3, and r-P4 could be antigens that react with antibodies, they showed high sensitivity in the detection of anti-Trichinella IgG antibodies in mice. Among these proteins, r-P1 may be a candidate antigen for the detection of anti-Trichinella IgG antibodies in the early infection phase and exhibited the best sensitivity among the antigens.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ed McGowan ◽  
Rachel Rosenthal ◽  
Andrew Fiore-Gartland ◽  
Gladys Macharia ◽  
Sheila Balinda ◽  
...  

Predictive models are becoming more and more commonplace as tools for candidate antigen discovery to meet the challenges of enabling epitope mapping of cohorts with diverse HLA properties. Here we build on the concept of using two key parameters, diversity metric of the HLA profile of individuals within a population and consideration of sequence diversity in the context of an individual's CD8 T-cell immune repertoire to assess the HIV proteome for defined regions of immunogenicity. Using this approach, analysis of HLA adaptation and functional immunogenicity data enabled the identification of regions within the proteome that offer significant conservation, HLA recognition within a population, low prevalence of HLA adaptation and demonstrated immunogenicity. We believe this unique and novel approach to vaccine design as a supplement to vitro functional assays, offers a bespoke pipeline for expedited and rational CD8 T-cell vaccine design for HIV and potentially other pathogens with the potential for both global and local coverage.


2020 ◽  
Vol 287 ◽  
pp. 109275
Author(s):  
Daniela A. Flores ◽  
Anabel E. Rodriguez ◽  
Mariela L. Tomazic ◽  
Susana Torioni de Echaide ◽  
Ignacio Echaide ◽  
...  

2020 ◽  
Vol 13 (10) ◽  
pp. 2663-2672
Author(s):  
Audrey Arnal ◽  
Liliana Villanueva‐Lizama ◽  
Christian Teh‐Poot ◽  
Claudia Herrera ◽  
Eric Dumonteil

Sign in / Sign up

Export Citation Format

Share Document