Direct measurement of subcritical crack growth rate in magnesium-aluminosilicate glass by the indentation technique

1991 ◽  
Vol 12 (5) ◽  
pp. 373-375 ◽  
Author(s):  
S.B. Bhaduri
Author(s):  
Shinji Konosu ◽  
Ryuji Uemori ◽  
Masao Yuga ◽  
Hiroshi Yamamoto

Hydrogen substantially reduces fracture properties such as threshold stress intensity factor KIH and tearing resistance dJ/da in conventional Cr-Mo steels. In order to enable the life assessment of a reactor with a hydrogen-induced crack using a failure assessment diagram (FAD), an experimental database of hydrogen-assisted subcritical crack growth rates da/dt is requisite. However, there are very few studies concerning the effects of hydrogen- and temper-embrittlement on da/dt at ambient temperatures in 2.25Cr-1Mo steels with high and low impurity levels. In this paper, vacuum melted lab heats of 2.25Cr-1Mo steel were supplied with compositional controls. Some specimens were embrittled by step cooling heat treatment (SCHT). Subcritical crack growth rate at a constant load was obtained by means of the potential drop method for 2.25Cr-1Mo steel with initial internal hydrogen (3.2 mass ppm).


2021 ◽  
Vol 11 (1) ◽  
pp. 329-338 ◽  
Author(s):  
E. Surojo ◽  
J. Anindito ◽  
F. Paundra ◽  
A. R. Prabowo ◽  
E. P. Budiana ◽  
...  

Abstract Underwater wet welding (UWW) is widely used in repair of offshore constructions and underwater pipelines by the shielded metal arc welding (SMAW) method. They are subjected the dynamic load due to sea water flow. In this condition, they can experience the fatigue failure. This study was aimed to determine the effect of water flow speed (0 m/s, 1 m/s, and 2 m/s) and water depth (2.5 m and 5 m) on the crack growth rate of underwater wet welded low carbon steel SS400. Underwater wet welding processes were conducted using E6013 electrode (RB26) with a diameter of 4 mm, type of negative electrode polarity and constant electric current and welding speed of 90 A and 1.5 mm/s respectively. In air welding process was also conducted for comparison. Compared to in air welded joint, underwater wet welded joints have more weld defects including porosity, incomplete penetration and irregular surface. Fatigue crack growth rate of underwater wet welded joints will decrease as water depth increases and water flow rate decreases. It is represented by Paris's constant, where specimens in air welding, 2.5 m and 5 m water depth have average Paris's constant of 8.16, 7.54 and 5.56 respectively. The increasing water depth will cause the formation of Acicular Ferrite structure which has high fatigue crack resistance. The higher the water flow rate, the higher the welding defects, thereby reducing the fatigue crack resistance.


2006 ◽  
Vol 503-504 ◽  
pp. 811-816 ◽  
Author(s):  
Alexei Vinogradov ◽  
Kazuo Kitagawa ◽  
V.I. Kopylov

Anisotropy of mechanical properties, fatigue and fracture resistance of precipitation hardened CuCrZr alloy ultrafine (UFG) grained by equal-channel angular pressing (ECAP) is in focus of the present communication. Fracture toughness was estimated in terms of J-integral and the fatigue crack growth rate was quantified. It was found that although the estimated JIC-value appeared lower than that reported in the literature for a reference alloy, the ductility, fracture and crack growth resistance remained satisfactory after ECAP while the tensile strength and fatigue limit improved considerably. The stable crack growth rate did not differ very much for ECAP and reference conventional CuCrZr and no remarkable anisotropy in the stable crack growth was noticed.


Sign in / Sign up

Export Citation Format

Share Document