fictive temperature
Recently Published Documents


TOTAL DOCUMENTS

140
(FIVE YEARS 19)

H-INDEX

28
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Chuanchao Zhang ◽  
Qiao Chen ◽  
Wei Liao ◽  
Rucheng Dai ◽  
Lijuan Zhang ◽  
...  

2021 ◽  
Vol 176 (10) ◽  
Author(s):  
Sharon L. Webb

AbstractThe unknown cooling-rate history of natural silicate melts can be investigated using differential scanning heat capacity measurements together with the limiting fictive temperature analysis calculation. There are a range of processes occurring during cooling and re-heating of natural samples which influence the calculation of the limiting fictive temperature and, therefore, the calculated cooling-rate of the sample. These processes occur at the extremes of slow cooling and fast quenching. The annealing of a sample at a temperature below the glass transition temperature upon cooling results in the subsequent determination of cooling-rates which are up to orders of magnitude too low. In contrast, the internal stresses associated with the faster cooling of obsidian in air result in an added exothermic signal in the heat capacity trace which results in an overestimation of cooling-rate. To calculate cooling-rate of glass using the fictive temperature method, it is necessary to create a calibration curve determined using known cooling- and heating-rates. The calculated unknown cooling-rate of the sample is affected by the magnitude of mismatch between the original cooling-rate and the laboratory heating-rate when using the matched cooling-/heating-rate method to derive a fictive temperature/cooling-rate calibration curve. Cooling-rates slower than the laboratory heating-rate will be overestimated, while cooling-rates faster than the laboratory heating-rate are underestimated. Each of these sources of error in the calculation of cooling-rate of glass materials—annealing, stress release and matched cooling/heating-rate calibration—can affect the calculated cooling-rate by factor of 10 or more.


Wear ◽  
2021 ◽  
pp. 204075
Author(s):  
Shipra Bajpai ◽  
Ambreen Nisar ◽  
Rupesh Kumar Sharma ◽  
Udo D. Schwarz ◽  
Kantesh Balani ◽  
...  

Author(s):  
Telesilla Bristogianni ◽  
Faidra Oikonomopoulou ◽  
Fred A. Veer

AbstractCast glass has great potential for diverse load-bearing, architectural applications; through casting, volumetric glass components can be made that take full advantage of glass’s stated compressive strength. However, the lack of engineering, production and quality control standards for cast glass and the intertwined ambiguities over its mechanical properties-particularly due to the variety in chemical compositions and the lack of understanding of the influence of flaws occurring in the glass bulk-act as an impediment to its wide-spread application. Addressing the above uncertainties, this work studies a total of 64 silicate-based glass specimens, prepared in 20 * 30 * 350 mm beam size, either by kiln-casting at relatively low forming temperatures (970–1120 $$^{\circ }$$ ∘ C), or by modification of industrially produced glass. For the kiln-casting of the specimens, pure and contaminated recycled cullet are used, either individually or in combination (composite glasses). The defects introduced in the glass specimens during the casting process are identified with digital microscopy and qualitative stress analysis using cross polarized light, and are categorized as stress-inducing, strength-reducing or harmless. The Impulse Excitation Technique is employed to measure the Young’s modulus and internal friction of the different glasses. Differential Scanning Calorimetry is used on a selection of glasses, to investigate changes in the glass transition range and fictive temperature of the kiln-cast glasses due to the slower cooling and prolonged annealing. The four-point bending experiments are shedding light upon the flexural strength and stiffness of the different glasses, while the fractographic analysis pinpoints the most critical defects per glass category. The experiments show the flexural strength of cast glass ranging between 30–73 MPa, according to the level of contamination and the chemical composition. The measured E moduli by both methods are in close agreement, ranging between 60–79 GPa. The comparison of the flexural strength with prior testing of cast glass involving shorter span fixtures showed a decreasing strength with increasing size for the contaminated specimens, but similar strengths for pure compositions. The results highlight the versatile role of defects in determining the glass strength and the complexity that arises in creating statistical prediction models and performing quality control.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sean Locker ◽  
Sushmit Goyal ◽  
Matthew E. McKenzie ◽  
S. K. Sundaram ◽  
Craig Ungaro

AbstractGlass structures of multicomponent oxide systems (CaO–Al2O3–SiO2) are studied using a simulated pulsed laser with molecular dynamics. The short- and intermediate-range order structures revealed a direct correlation between the transformation of Al(IV) to Al(V), regions of increased density following laser processing, inherent reduction in the average T–O–T (T = Al, Si) angle, and associated elongation of the T–O bonding distance. Variable laser pulse energies were simulated across calcium aluminosilicate glasses with high silica content (50–80%) to identify densification trends attributed to composition and laser energy. High-intensity pulsed laser effects on fictive temperature and shockwave promotion are discussed in detail for their role in glass densification. Laser-induced structural changes are found to be highly dependent on pulse energy and glass chemistry.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Rodrigo Miguel Ojeda Mota ◽  
Ethen Thomas Lund ◽  
Sungwoo Sohn ◽  
David John Browne ◽  
Douglas Clayton Hofmann ◽  
...  

AbstractMost of the known bulk metallic glasses lack sufficient ductility or toughness when fabricated under conditions resulting in bulk glass formation. To address this major shortcoming, processing techniques to improve ductility that mechanically affect the glass have been developed, however it remains unclear for which metallic glass formers they work and by how much. Instead of manipulating the glass state, we show here that an applied strain rate can excite the liquid, and simultaneous cooling results in freezing of the excited liquid into a glass with a higher fictive temperature. Microscopically, straining causes the structure to dilate, hence “pulls” the structure energetically up the potential energy landscape. Upon further cooling, the resulting excited liquid freezes into an excited glass that exhibits enhanced ductility. We use Zr44Ti11Cu10Ni10Be25 as an example alloy to pull bulk metallic glasses through this excited liquid cooling method, which can lead to tripling of the bending ductility.


2021 ◽  
Author(s):  
Sean Locker ◽  
Sushmit Goyal ◽  
Matt McKenzie ◽  
Craig Ungaro ◽  
SK Sundaram

Abstract Glass structures of multicomponent oxide systems (CaO-Al2O3-SiO2) are studied using a simulated pulsed laser with molecular dynamics. The short- and intermediate-range order structures revealed a direct correlation between the transformation of Al(IV) to Al(V), regions of increased density following laser processing, inherent reduction in the average T-O-T (T = Al, Si) angle, and associated elongation of the T-O bonding distance. Variable laser pulse energies were simulated across calcium aluminosilicate glasses with high silica content (50-80%) to identify densification trends attributed to composition and laser energy. High-intensity pulsed laser effects on fictive temperature and shockwave promotion are discussed in detail for their role in glass densification. Laser-induced structural changes are found to be highly dependent on pulse energy and glass chemistry.


Micromachines ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1069
Author(s):  
Yue Zhang ◽  
Kaiyuan You ◽  
Fengzhou Fang

Precision glass molding is the most appropriate method for batch production of glass lenses with high surface accuracy and qualified optical performance. However, the form error caused by material expansion and contraction is the main factor affecting the precision of the molded lenses, thus the mold must be pre-compensated. In this paper, an effective method of mold pre-compensation based on mathematical analysis is established. Based on the thermal expansion curve of D-ZK3 glass, the freezing fictive temperature of the glass under the actual cooling rate is measured, and the mold pre-compensation factor can be quickly calculated. Experimental results show that the peak valley (PV) value of the surface form error of molded aspheric lens with an aperture of 5.3 mm is effectively reduced from 2.04 μm to 0.31 μm after the pre-compensation, thus meeting the geometric evaluation criterion.


Author(s):  
Rodrigo Ojeda Mota ◽  
Ethen Lund ◽  
Sungwoo Sohn ◽  
David Browne ◽  
Jan Schroers

Abstract A major shortcoming of most known bulk metallic glasses (BMGs) is that they lack sufficient ductility, or toughness, when fabricated under conditions resulting in bulk glass formation. To address this, processing techniques to improve ductility that mechanically affect the glass have been developed, however it remains unclear for which BMG formers they work, and by how much. We show here that, instead of manipulating the glass state, an applied strain rate can excite the liquid, and simultaneous cooling results in freezing of the excited liquid into a glass with a higher fictive temperature. Microscopically, straining causes the structure to dilate, hence “pulling” the structure energetically up the potential energy landscape. Upon further cooling, the resulting excited liquid freezes into an excited glass that exhibits enhanced ductility. We use Zr44Ti11Cu10Ni10Be25 to demonstrate how pulling BMGs through this excited liquid cooling methods can lead to a tripling of the bending ductility.


Sign in / Sign up

Export Citation Format

Share Document