anisotropy of mechanical properties
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 28)

H-INDEX

15
(FIVE YEARS 3)

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7176
Author(s):  
Alexey Fedorenko ◽  
Boris Fedulov ◽  
Yulia Kuzminova ◽  
Stanislav Evlashin ◽  
Oleg Staroverov ◽  
...  

In the presented study, LPBF 316L stainless steel tensile specimens were manufactured in three different orientations for the analysis of anisotropy. The first set of specimens was built vertically on the build platform, and two other sets were oriented horizontally perpendicular to each other. Tensile test results show that mean Young’s modulus of vertically built specimens is significantly less then horizontal ones (158.7 GPa versus 198 GPa), as well as yield strength and elongation. A role of residual stress in a deviation of tensile loading diagrams is investigated as a possible explanation. Simulation of the build process on the basis of ABAQUS FEA software was used to predict residual stress in 316L cylindrical specimens. Virtual tensile test results show that residual stress affects the initial stage of the loading curve with a tendency to reduce apparent Young’s modulus, measured according to standard mechanical test methods.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2986
Author(s):  
Victor Beloshenko ◽  
Yan Beygelzimer ◽  
Vyacheslav Chishko ◽  
Bogdan Savchenko ◽  
Nadiya Sova ◽  
...  

This study addresses the mechanical behavior of lattice materials based on flexible thermoplastic polyurethane (TPU) with honeycomb and gyroid architecture fabricated by 3D printing. Tensile, compression, and three-point bending tests were chosen as mechanical testing methods. The honeycomb architecture was found to provide higher values of rigidity (by 30%), strength (by 25%), plasticity (by 18%), and energy absorption (by 42%) of the flexible TPU lattice compared to the gyroid architecture. The strain recovery is better in the case of gyroid architecture (residual strain of 46% vs. 31%). TPUs with honeycomb architecture are characterized by anisotropy of mechanical properties in tensile and three-point bending tests. The obtained results are explained by the peculiarities of the lattice structure at meso- and macroscopic level and by the role of the pore space.


2021 ◽  
Author(s):  
Mingyang Zhai ◽  
Zenglin Wang ◽  
Liaoyuan Zhang ◽  
Aishan Li ◽  
Zilin Zhang ◽  
...  

Abstract Rock brittleness is a crucial mechanical property and essential for fracability evaluation and fracturing scheme design in unconventional reservoirs. However, the influence of inherent anisotropy on deep laminated sandstone’s mechanical properties and brittleness characteristics is rarely investigated. The energy transformation and damage evolution reflected by complete stress-strain curves are analyzed during the entire process of rock rupture under compressions. A new brittleness index is established based on energy evolution during sandstone failure. Its advantages involve comprehensively considering the energy transformation characteristics at both pre-peak and post-peak stages and the capability to characterize the effect of confining pressure and bedding plane (BP) geometry on sandstone brittleness. The triaxial compression tests on sandstones are conducted to validate the reliability and accuracy of the new brittleness index. Numerical simulations are then performed to further investigate the manner in which BP angle, BP density, and confining pressure control the brittleness anisotropy of deep laminated sandstones based on the finite element method. Then the acoustic emission (AE) characteristics of anisotropic sandstone and correlations between AE mode and brittleness index are discussed. The results indicated that the anisotropy of mechanical properties and brittleness of deep laminated sandstones were significantly affected by BP angle, BP density, and confining pressure. With the increase of BP angle, the brittleness index of deep laminated sandstone decreases first and then increases, showing a U-shape variation law, whose maximum and minimum values are obtained at φ =0° and φ =45°, respectively. The AE characteristics were closely related to rock brittleness, which was jointly controlled by BP geometry and confining pressure. The results provide a basis for the brittleness and fracability evaluation and optimum hydraulic fracturing design in deep laminated sandstones.


2021 ◽  
Author(s):  
Yuan Yao ◽  
Cheng Ding ◽  
Mohamed Aburaia ◽  
Maximilian Lackner ◽  
Lanlan He

Abstract The Fused Filament Fabrication process is the most used additive manufacturing process due to its simplicity and low operating costs. In this process, a thermoplastic filament is led through an extruder, melted, and applied to a building platform by the axial movements of an automated Cartesian system in such a way that a three-dimensional object is created layer by layer. Compared to other additive manufacturing technologies, the components produced have mechanical limitations and are often not suitable for functional applications. To reduce the anisotropy of mechanical strength in fused filament fabrication (FFF), this paper proposes a 3D weaving deposit path planning method that utilizes a 5-layer repetitive structure to achieve interlocking and embedding between neighbor slicing planes to improve the mechanical linkage within the layers. The developed algorithm extends the weaving path as an infill pattern to fill different structures and makes this process feasible on a standard three-axis 3D printer. Compared with 3D weaving printed parts by layer-to-layer deposit, the anisotropy of mechanical properties inside layers is significantly reduced to 10.21% and 0.98%.


2021 ◽  
Vol 28 (5) ◽  
pp. 1316-1323
Author(s):  
Dong-dong Zhang ◽  
Chu-ming Liu ◽  
Ying-chun Wan ◽  
Shu-nong Jiang ◽  
Gang Zeng

2021 ◽  
Vol 854 ◽  
pp. 157108
Author(s):  
Jinhua Peng ◽  
Zhen Zhang ◽  
Huanhuan Chen ◽  
Chang Long ◽  
Yong Wu ◽  
...  

Author(s):  
A.V. Pchel'nikov ◽  
V.A. Filyakova ◽  
A.A. Sidorov

The effect of the macrostructure drawing after forming of blank made of high-temperature 901 alloy on the anisotropy of mechanical properties is studied. The effect of drawing on anisotropy is considered taking into account the unevenness of plastic deformation during upsetting and taking into account the deformation accumulated during the forging of the rod for the initial blank. The results of upsetting simulation and the test results of the samples mechanical properties cut in different directions of the blank fiber are presented.


Sign in / Sign up

Export Citation Format

Share Document