A surrogate relaxation based algorithm for a general quadratic multi-dimensional knapsack problem

1988 ◽  
Vol 7 (5) ◽  
pp. 253-258 ◽  
Author(s):  
Mohamed Djerdjour ◽  
Kamlesh Mathur ◽  
Harvey M. Salkin
1998 ◽  
Vol 49 (1) ◽  
pp. 86-92
Author(s):  
A Volgenant ◽  
S Marsman
Keyword(s):  

2014 ◽  
Vol 1 ◽  
pp. 219-222
Author(s):  
Jing Guo ◽  
Jousuke Kuroiwa ◽  
Hisakazu Ogura ◽  
Izumi Suwa ◽  
Haruhiko Shirai ◽  
...  

Author(s):  
Benyamin Abdollahzadeh ◽  
Saeid Barshandeh ◽  
Hatef Javadi ◽  
Nicola Epicoco
Keyword(s):  

Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1456
Author(s):  
Stefka Fidanova ◽  
Krassimir Todorov Atanassov

Some of industrial and real life problems are difficult to be solved by traditional methods, because they need exponential number of calculations. As an example, we can mention decision-making problems. They can be defined as optimization problems. Ant Colony Optimization (ACO) is between the best methods, that solves combinatorial optimization problems. The method mimics behavior of the ants in the nature, when they look for a food. One of the algorithm parameters is called pheromone, and it is updated every iteration according quality of the achieved solutions. The intuitionistic fuzzy (propositional) logic was introduced as an extension of Zadeh’s fuzzy logic. In it, each proposition is estimated by two values: degree of validity and degree of non-validity. In this paper, we propose two variants of intuitionistic fuzzy pheromone updating. We apply our ideas on Multiple-Constraint Knapsack Problem (MKP) and compare achieved results with traditional ACO.


Mathematics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1126
Author(s):  
Marta Lilia Eraña-Díaz ◽  
Marco Antonio Cruz-Chávez ◽  
Fredy Juárez-Pérez ◽  
Juana Enriquez-Urbano ◽  
Rafael Rivera-López ◽  
...  

This paper presents a methodological scheme to obtain the maximum benefit in occupational health by attending to psychosocial risk factors in a company. This scheme is based on selecting an optimal subset of psychosocial risk factors, considering the departments’ budget in a company as problem constraints. This methodology can be summarized in three steps: First, psychosocial risk factors in the company are identified and weighted, applying several instruments recommended by business regulations. Next, a mathematical model is built using the identified psychosocial risk factors information and the company budget for risk factors attention. This model represents the psychosocial risk optimization problem as a Multidimensional Knapsack Problem (MKP). Finally, since Multidimensional Knapsack Problem is NP-hard, one simulated annealing algorithm is applied to find a near-optimal subset of factors maximizing the psychosocial risk care level. This subset is according to the budgets assigned for each of the company’s departments. The proposed methodology is detailed using a case of study, and thirty instances of the Multidimensional Knapsack Problem are tested, and the results are interpreted under psychosocial risk problems to evaluate the simulated annealing algorithm’s performance (efficiency and efficacy) in solving these optimization problems. This evaluation shows that the proposed methodology can be used for the attention of psychosocial risk factors in real companies’ cases.


Sign in / Sign up

Export Citation Format

Share Document