Determination of the optic flow field using the spatiotemporal deformation of region properties

1987 ◽  
Vol 6 (3) ◽  
pp. 169-177 ◽  
Author(s):  
T.L. Huntsberger ◽  
S.N. Jayaramamurthy
Keyword(s):  
Cephalalgia ◽  
2006 ◽  
Vol 26 (8) ◽  
pp. 949-959 ◽  
Author(s):  
AM McKendrick ◽  
A Turpin ◽  
S Webb ◽  
DR Badcock

Some migraineurs have increased thresholds for the detection of global dot motion. We investigated whether migraineurs show consequential abnormalities in the determination of direction of self-motion (heading) from simulated optic flow. The ability to determine heading from optic flow is likely to be necessary for optimal determination of self-motion through the environment. Twenty-five migraineurs and 25 controls participated. Global dot motion coherence thresholds were assessed, in addition to performance on two simulated heading tasks: one with a symmetrical flow field, and the second with differing velocity of optic flow on the left and right sides of the participant. While some migraineurs demonstrated abnormal global motion coherence thresholds, there was no difference in performance on the heading tasks at either simulated walking (5 km/h) or driving (50 km/h) speeds. Increased global motion coherence thresholds in migraineurs do not result in abnormal judgements of heading from 100± coherent optic flow.


1988 ◽  
Vol 8 (5) ◽  
pp. 325-333 ◽  
Author(s):  
T.L. Huntsberger ◽  
S.N. Jayaramamurthy
Keyword(s):  

2014 ◽  
Vol 98 ◽  
pp. 14-25 ◽  
Author(s):  
Constance S. Royden ◽  
Michael A. Holloway
Keyword(s):  

2010 ◽  
Vol 5 (8) ◽  
pp. 139-139 ◽  
Author(s):  
A. Shrivastava ◽  
M. M. Hayhoe ◽  
J. B. Pelz ◽  
R. Mruczek
Keyword(s):  

1986 ◽  
Author(s):  
J. Wachter ◽  
G. Eyb

Up to now the determination of flow conditions across the entire circumference in LP steam turbines appears to be a difficult undertaking. The difficulties are mainly caused by the condensing medium steam and by the limited access to the stage from outside. The Last Stage Test Stand at the University of Stuttgart is a suitable facility for flow measurements in the LP part of steam turbines. Besides a short description of the test stand itself, the measuring equipment and the newly developed methods for data acquisition and evaluation are presented. Finally the flow field behind the last stage is shown and the results interpreted.


Author(s):  
Sheila A. Garness ◽  
John M. Flach ◽  
Terry Stanard ◽  
Rik Warren

This study evaluated subjects ability to track a constant altitude as a function of the structure in the optical flow field. Optic flow was manipulated by using four different types of ground texture (splay angle, depression angle, random dot, and block textures) crossed with two global optical flow (GOF) rates (0 and 3 eyeheights/s). The subjects were asked to maintain a constant altitude while wind disturbances randomly perturbed them on vertical, lateral, and fore-aft axes. The critical independent variables were texture type and GOF rate. Texture type was a within-subjects variable while GOF rate was a between-subjects variable. The main dependent variables included RMS height error and the correlation between subjects stick activity and the three wind disturbances. For both dependent variables, an interaction was found in that the depression angle texture provided superior performance in a hover or 0 GOF rate condition. The splay angle texture provided a constant level of performance for both GOF rates, being superior to depression angle in the higher GOF rate. These results are consistent with Flach et al.'s (1992) hypothesis that the ability to pick-up altitude information from the optic flow field depends upon the amount of optical activity that is specific to changes in altitude (signal) rather than specific to changes in lateral or fore-aft position (noise). This hypothesis provides a higher order explanation for previous results on the control of altitude which had been thought to be inconsistent.


1998 ◽  
Vol 79 (3) ◽  
pp. 1461-1480 ◽  
Author(s):  
Markus Lappe ◽  
Martin Pekel ◽  
Klaus-Peter Hoffmann

Lappe, Markus, Martin Pekel, and Klaus-Peter Hoffmann. Optokinetic eye movements elicited by radial optic flow in the macaque monkey. J. Neurophysiol. 79: 1461–1480, 1998. We recorded spontaneous eye movements elicited by radial optic flow in three macaque monkeys using the scleral search coil technique. Computer-generated stimuli simulated forward or backward motion of the monkey with respect to a number of small illuminated dots arranged on a virtual ground plane. We wanted to see whether optokinetic eye movements are induced by radial optic flow stimuli that simulate self-movement, quantify their parameters, and consider their effects on the processing of optic flow. A regular pattern of interchanging fast and slow eye movements with a frequency of 2 Hz was observed. When we shifted the horizontal position of the focus of expansion (FOE) during simulated forward motion (expansional optic flow), median horizontal eye position also shifted in the same direction but only by a smaller amount; for simulated backward motion (contractional optic flow), median eye position shifted in the opposite direction. We relate this to a change in Schlagfeld typically observed in optokinetic nystagmus. Direction and speed of slow phase eye movements were compared with the local flow field motion in gaze direction (the foveal flow). Eye movement direction matched well the foveal motion. Small systematic deviations could be attributed to an integration of the global motion pattern. Eye speed on average did not match foveal stimulus speed, as the median gain was only ∼0.5–0.6. The gain was always lower for expanding than for contracting stimuli. We analyzed the time course of the eye movement immediately after each saccade. We found remarkable differences in the initial development of gain and directional following for expansion and contraction. For expansion, directional following and gain were initially poor and strongly influenced by the ongoing eye movement before the saccade. This was not the case for contraction. These differences also can be linked to properties of the optokinetic system. We conclude that optokinetic eye movements can be elicited by radial optic flow fields simulating self-motion. These eye movements are linked to the parafoveal flow field, i.e., the motion in the direction of gaze. In the retinal projection of the optic flow, such eye movements superimpose retinal slip. This results in complex retinal motion patterns, especially because the gain of the eye movement is small and variable. This observation has special relevance for mechanisms that determine self-motion from retinal flow fields. It is necessary to consider the influence of eye movements in optic flow analysis, but our results suggest that direction and speed of an eye movement should be treated differently.


2017 ◽  
Vol 45 ◽  
pp. 502-510 ◽  
Author(s):  
Chaojie Wang ◽  
Shengqiang Yang ◽  
Chenglin Jiang ◽  
Dingding Yang ◽  
Chaojie Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document