scholarly journals Radiocarbon in 9th to 5th Century BC Tree-Ring Samples from the Ouban 1 Archaeological Site, Hiroshima, Japan

Radiocarbon ◽  
2007 ◽  
Vol 49 (2) ◽  
pp. 473-479 ◽  
Author(s):  
Hiromasa Ozaki ◽  
Mineo Imamura ◽  
Hiroyuki Matsuzaki ◽  
Takumi Mitsutani

In order to investigate the regional atmospheric radiocarbon offset, accelerator mass spectrometry (AMS) 14C measurements were made on 5-yr increments of a Japanese wood sample dendrochronologically dated to 820–436 BC. The 14C data from the Japanese tree-ring samples were compared with the IntCal04 calibration curve (Reimer et al. 2004). In most parts, the differences between IntCal04 and 14C dates in the Japanese tree-ring samples were within experimental statistical errors. At around 680 BC, however, significant differences of up to 100 14C yr were observed. These differences may indicate either regional offsets in Japan or the short-term fluctuation of a subdecadal timescale in atmospheric 14C variations.

Radiocarbon ◽  
2003 ◽  
Vol 45 (1) ◽  
pp. 81-89 ◽  
Author(s):  
Minoru Sakamoto ◽  
Mineo Imamura ◽  
Johannes Van der Plicht ◽  
Takumi Mitsutani ◽  
Makoto Sahara

The radiocarbon content of Japanese cedars was measured by accelerator mass spectrometry for decadal tree-ring samples from the period of 240 BC to AD 900. Conventional gas counting was also used for part of the samples. The data were compared with the INTCAL98 calibration curve (Stuiver et al. 1998). The results indicate that the difference in atmospheric 14C between Japan and North America or Europe is negligible at this period, less than 18 14C yr using an average of 50 yr. However, in the period of about AD 100 to about AD 200, we cannot exclude the possibility of a deviation of the order of 30 to 40 14C yr to the older ages.


Radiocarbon ◽  
2020 ◽  
Vol 62 (4) ◽  
pp. 873-882 ◽  
Author(s):  
L Wacker ◽  
E M Scott ◽  
A Bayliss ◽  
D Brown ◽  
E Bard ◽  
...  

ABSTRACTThe radiocarbon (14C) calibration curve so far contains annually resolved data only for a short period of time. With accelerator mass spectrometry (AMS) matching the precision of decay counting, it is now possible to efficiently produce large datasets of annual resolution for calibration purposes using small amounts of wood. The radiocarbon intercomparison on single-year tree-ring samples presented here is the first to investigate specifically possible offsets between AMS laboratories at high precision. The results show that AMS laboratories are capable of measuring samples of Holocene age with an accuracy and precision that is comparable or even goes beyond what is possible with decay counting, even though they require a thousand times less wood. It also shows that not all AMS laboratories always produce results that are consistent with their stated uncertainties. The long-term benefits of studies of this kind are more accurate radiocarbon measurements with, in the future, better quantified uncertainties.


Radiocarbon ◽  
2007 ◽  
Vol 49 (2) ◽  
pp. 331-337 ◽  
Author(s):  
Mineo Imamura ◽  
Hiromasa Ozaki ◽  
Takumi Mitsutani ◽  
Etsuko Niu ◽  
Shigeru Itoh

Progress in radiocarbon accelerator mass spectrometry (AMS) techniques enables much more access to wiggle-matching techniques for high-precision 14C dating with relatively low costs than before. Recently, we have applied wiggle-matching for a number of wood samples where dendrochronology is difficult because of various limitations imposed for dendro-dating. In most cases, wiggle-matching gave rather unambiguous calendar ages, but we found that in some cases the calibrated date was very sensitive to a systematic error of the 14C date. Here, we present a wooden artifact from the Ujishigai archaeological site as a case where the highest wiggle-matched date did not agree with the date given by dendrochronology. An age with lower probability agreed with the tree-ring age of AD 389, which marked the beginning of the production of Sue ware (unglazed stoneware) in Japan. We show that systematic errors must be carefully taken into account while interpreting 14C wiggle-matching results, whether they are due to instrumental errors (statistical) or due to a regional offset from the IntCal04 (Reimer et al. 2004) calibration curve.


Radiocarbon ◽  
2019 ◽  
Vol 62 (4) ◽  
pp. 891-899 ◽  
Author(s):  
Adam Sookdeo ◽  
Bernd Kromer ◽  
Ulf Büntgen ◽  
Michael Friedrich ◽  
Ronny Friedrich ◽  
...  

ABSTRACTAdvances in accelerator mass spectrometry have resulted in an unprecedented amount of new high-precision radiocarbon (14C) -dates, some of which will redefine the international 14C calibration curves (IntCal and SHCal). Often these datasets are unaccompanied by detailed quality insurances in place at the laboratory, questioning whether the 14C structure is real, a result of a laboratory variation or measurement-scatter. A handful of intercomparison studies attempt to elucidate laboratory offsets but may fail to identify measurement-scatter and are often financially constrained. Here we introduce a protocol, called Quality Dating, implemented at ETH-Zürich to ensure reproducible and accurate high-precision 14C-dates. The protocol highlights the importance of the continuous measurements and evaluation of blanks, standards, references and replicates. This protocol is tested on an absolutely dated German Late Glacial tree-ring chronology, part of which is intercompared with the Curt Engelhorn-Center for Archaeometry, Mannheim, Germany (CEZA). The combined dataset contains 170 highly resolved, highly precise 14C-dates that supplement three decadal dates spanning 280 cal. years in IntCal, and provides detailed 14C structure for this interval.


Radiocarbon ◽  
2014 ◽  
Vol 56 (1) ◽  
pp. 245-256 ◽  
Author(s):  
Khaled Al-Bashaireh

This article presents accelerator mass spectrometry (AMS) radiocarbon dates of organic inclusions of cement materials from the House XVII-XVIII Complex located in the Umm el-Jimal archaeological site, east Jordan, aiming at refining the unclear chronology of the house. Fine straws and small fragments of charcoal uncovered from preserved architectural lime mortars and plasters were dated without carrying out extensive excavations. The results indicate that the house most probably was initially plastered or built during the middle of the Byzantine period. The results agree with the historical and archaeological data indicating that Umm el-Jimal flourished during this period; therefore, it is probable that the house was established during this time to meet the housing demand for the increased number of its population.


2010 ◽  
Vol 23 (2) ◽  
pp. 20-39 ◽  
Author(s):  
Rafael Suárez ◽  
Guaciara M. Santos

On this paper we show records of Pleistocene fauna from the archaeological site of PayPaso 1, located near of the Quarai River. On this site we recovered two extinct species, Equus sp. (ancient horse) e Glyptodon sp. (giant armadillo), direct associated with lithic artifacts. Our results indicate that these extinct mammals lived in the beginning of the Holocene (9,600 – 9,100 years 14C BP), based on nine 14C age results obtained by AMS (Accelerator Mass Spectrometry) measurements. In this work, these results are compared with others in South America. Human adaptation, lithic technology, Pleistocene fauna extinction and climate change at the transition between Pleistocene-Holocene are also discussed.


Radiocarbon ◽  
2014 ◽  
Vol 56 (02) ◽  
pp. 655-665
Author(s):  
John Meadows ◽  
Nicoletta Martinelli ◽  
Marie-Josée Nadeau ◽  
Elodia Bianchin Citton

Two floating tree-ring chronologies were developed from oak timbers recovered during salvage excavations of a pre-Roman wharf in Este, a prominent center of the Veneti people, who lived in northeastern Italy during the Iron Age. Wiggle-match radiocarbon dating shows that one chronology spans the 10th and 9th centuries cal BC, and that the waterfront was probably built ∼800 cal BC. The second chronology apparently spans most of the 7th century cal BC, and is associated with a phase of construction about 2 centuries after the first. One of the samples gave what appeared to be anomalous14C results that may best be explained as evidence of a short-term fluctuation in atmospheric14C level, which can be seen in short-lived samples but is not apparent in the decadal or bidecadal calibration data. Both chronologies cover periods for which there are no other tree-ring chronologies in this region, and could become key to refining the local Iron Age chronology.


Radiocarbon ◽  
2013 ◽  
Vol 55 (3) ◽  
pp. 1278-1285
Author(s):  
Vladimir A Levchenko ◽  
Flarit A Sungatov

A suite of accelerator mass spectrometry (AMS) radiocarbon dates for the Ufa-II archaeological site in Bashkortostan, Russia, is obtained for the first time. Dating was done on charcoal samples from a sequence of cultural deposits collected during the 2011 digging season. An age-depth chronology is established using the Bayesian deposition General Outlier P_Sequence model. The oldest age for the site at the horizon immediately over the sterile ground was cal AD 137–237 (68% probability), corresponding to the beginning of site occupation. The youngest 14C date found was late 6th to early 7th century cal AD for the extensive planked boardwalks unearthed at the site. The 14C dates are in good agreement with archaeological determinations based on discovered artifacts.


2002 ◽  
Vol 2 ◽  
pp. 1579-1593 ◽  
Author(s):  
J.T. Jull ◽  
G.S. Burr ◽  
J.W. Beck ◽  
D.J. Donahue ◽  
D. Biddulph ◽  
...  

There are many diverse uses of accelerator mass spectrometry (AMS).14C studies at our laboratory include much research related to paleoclimate, with14C as a tracer of past changes in environmental conditions as observed in corals, marine sediments, and many terrestrial records. Terrestrial records can also show the influence of oceanic oscillations, whether they are short term, such as ENSO (El Niño/Southern Oscillation), or on the millennial time scale. In tracer applications, we have developed the use of129I as well as14C as tracers for nuclear pollution studies around radioactive waste dump sites, in collaboration with IAEA. We discuss some applications carried out in Tucson, AZ, for several of these fields and hope to give some idea of the breadth of these studies.


Radiocarbon ◽  
1990 ◽  
Vol 32 (2) ◽  
pp. 143-147 ◽  
Author(s):  
T S Dye

Accelerator mass spectrometry dating of three 50g samples of marine turtle bone from the basal cultural stratum of the Tongoleleka archaeological site, Lifuka Island, Kingdom of Tonga, South Pacific yields results that agree with conventional 14C dates on marine shell. A method for calibrating these dates that takes into account the long distance migrations of marine turtles in the South Pacific is proposed. A sample size greater than 50g is recommended for routine AMS dating of marine turtle bone.


Sign in / Sign up

Export Citation Format

Share Document