Comparative regenerative ability of internodal segments of wild type and a genic male sterile line of rapeseed (Brassica napus) cultured in vitro

Plant Science ◽  
1991 ◽  
Vol 79 (1) ◽  
pp. 95-98 ◽  
Author(s):  
Amit Shukla ◽  
V.K. Sawhney
2021 ◽  
Vol 5 (4) ◽  
pp. 61-69
Author(s):  
Syed Mazahir Hussain ◽  
Khursheed Hussain ◽  
Ajaz Ahmad Malik ◽  
Amjad M Hussaini ◽  
Syeda Farwah ◽  
...  

Euphytica ◽  
2015 ◽  
Vol 206 (2) ◽  
pp. 473-485 ◽  
Author(s):  
Chengyu Yu ◽  
Yingfen Guo ◽  
Juan Ge ◽  
Yumei Hu ◽  
Jungang Dong ◽  
...  

2012 ◽  
Vol 38 (3) ◽  
pp. 541 ◽  
Author(s):  
Juan GE ◽  
Ying-Fen GUO ◽  
Cheng-Yu YU ◽  
Guo-Yun ZHANG ◽  
Jun-Gang DONG ◽  
...  

2021 ◽  
Vol 22 (15) ◽  
pp. 7916
Author(s):  
Yilin Jiang ◽  
Ziwen Li ◽  
Xinze Liu ◽  
Taotao Zhu ◽  
Ke Xie ◽  
...  

The function and regulation of lipid metabolic genes are essential for plant male reproduction. However, expression regulation of lipid metabolic genic male sterility (GMS) genes by noncoding RNAs is largely unclear. Here, we systematically predicted the microRNA regulators of 34 maize white brown complex members in ATP-binding cassette transporter G subfamily (WBC/ABCG) genes using transcriptome analysis. Results indicate that the ZmABCG26 transcript was predicted to be targeted by zma-miR164h-5p, and their expression levels were negatively correlated in maize B73 and Oh43 genetic backgrounds based on both transcriptome data and qRT-PCR experiments. CRISPR/Cas9-induced gene mutagenesis was performed on ZmABCG26 and another lipid metabolic gene, ZmFAR1. DNA sequencing, phenotypic, and cytological observations demonstrated that both ZmABCG26 and ZmFAR1 are GMS genes in maize. Notably, ZmABCG26 proteins are localized in the endoplasmic reticulum (ER), chloroplast/plastid, and plasma membrane. Furthermore, ZmFAR1 shows catalytic activities to three CoA substrates in vitro with the activity order of C12:0-CoA > C16:0-CoA > C18:0-CoA, and its four key amino acid sites were critical to its catalytic activities. Lipidomics analysis revealed decreased cutin amounts and increased wax contents in anthers of both zmabcg26 and zmfar1 GMS mutants. A more detailed analysis exhibited differential changes in 54 monomer contents between wild type and mutants, as well as between zmabcg26 and zmfar1. These findings will promote a deeper understanding of miRNA-regulated lipid metabolic genes and the functional diversity of lipid metabolic genes, contributing to lipid biosynthesis in maize anthers. Additionally, cosegregating molecular markers for ZmABCG26 and ZmFAR1 were developed to facilitate the breeding of male sterile lines.


1984 ◽  
Vol 26 (6) ◽  
pp. 752-761 ◽  
Author(s):  
C. A. Newell ◽  
M. L. Rhoads ◽  
D. L. Bidney

Plants were regenerated from seedling tissue explants of four lines of winter rape (Brassica napus L.) including a cytoplasmic male sterile line carrying Raphanus sativus L. cytoplasm, and from leaf mesophyll protoplasts of the cytoplasmic male sterile line. Chromosome number variability was investigated in 102 regenerated plants. Mitotic root-tip cells were scored initially; those plants exhibiting mixoploidy or an altered chromosome number were reexamined at meiosis to confirm the presence of alterations in germ line cells. Plants regenerated from seedling explants included 2n = 38 diploids (87.0%) similar to the parental line, monosomics (7.8%), trisomics (2.6%), and 2n = 76 tetraploids (1.3%). The germ line number was not resolved in one mixoploid (1.3%). Protoplast-derived regenerated plants were diploid (44%), hypodiploid (20%), and tetraploid or hypotetraploid (36%). Meiotic analysis of regenerated plants showed a range of multiple chromosome associations with no plants consistently exhibiting bivalent formation only. Chromosomal alterations other than number may have been induced by culture, but could not be substantiated since multiple chromosome associations were also frequent in control plants grown from seed.Key words: plant regeneration, protoplast regeneration, Brassica napus, cytogenetics.


2016 ◽  
Vol 38 (2) ◽  
Author(s):  
Chengyu Yu ◽  
Xianfeng Xu ◽  
Juan Ge ◽  
Yingfen Guo ◽  
Jungang Dong ◽  
...  

1997 ◽  
Vol 128 (3) ◽  
pp. 299-301 ◽  
Author(s):  
B. HU ◽  
F. CHEN ◽  
Q. LI

Male sterile combinations made from interspecific crosses between the polima CMS line of Brassica napus and varieties of B. chinensis were backcrossed to BC3. Twenty-six selfing lines from B. chinensis were tested for their ability to either maintain complete sterility or to restore fertility in crosses with the polima male sterile line. Results show that four of these hybrids were completely male sterile and two were fertile. The sterility of the B. chinensis with polima cytoplasm was much more stable than male sterile lines with B. campestris and B. chinensis cytoplasm, which were sterile before full flowering but progressively became fertile as flowering proceeded. The results suggest that polima cytoplasm could be a suitable male sterile-inducing allocytoplasm for B. chinensis, as both maintainers and restorers are available, and could supply a reliable pollination control system for hybrid seed production in this species.


1990 ◽  
Vol 70 (3) ◽  
pp. 611-618 ◽  
Author(s):  
R. PINNISCH ◽  
P. B. E. McVETTY

Hybrid summer rape (Brassica napus L.) seed production blocks were established at two locations in Manitoba in 1986 and 1987 to examine the effect of distance from the pollen source on seed yield, (both total and hybrid) and percent hybridity of seed produced on rows of a male sterile line of the open pollinated population B. napus cultivar, Marnoo, possessing the pol cytoplasmic male sterility inducing cytoplasm. A 10:1 ratio of male sterile line (A-line) to pollen parent was employed. Leaf cutter bees (Megachile rotundata F.) were used as the pollen vector between the two parents. In 1986, no significant differences in total seed yield were found among A-line rows, while in 1987, significant differences in total seed yields of A-line rows were found. Differences in hybrid seed yields among A-line rows were significant for all locations and years. Leaf cutter bees were found to be effective pollinators of the A-line plants. Less than half and less than a third of the seed produced on the A-line rows in 1986 and 1987, respectively, was hybrid seed. The high percentage of non-hybrid seed present in the seed lot may have been due to incomplete male sterility of the Marnoo A-line population. Total seed yields, hybrid seed yields and percent hybridity all declined linearly as distance from the pollen source increased. Improvement in the degree of male sterility of the Marnoo A-line population and/or a reduction in the 10:1 ratio of parents, and subsequent maximum A-line row to R-line row distance, will be necessary if hybrid summer rape seed production using this pol CMS A-line is to be commercially viable.Key words: Brassica napus L., CMS, hybrid, hybridity


Sign in / Sign up

Export Citation Format

Share Document