Mechanisms for acquired cytotoxic drug resistance in human small cell lung cancer and the potential utilization of resistance modifiers — A review with focus on in vitro studies

Lung Cancer ◽  
1990 ◽  
Vol 6 (1-2) ◽  
pp. 9-15 ◽  
Author(s):  
Jonas Bergh ◽  
Peter Nygren ◽  
Rolf Larsson
2020 ◽  
Author(s):  
Nicole M Hermance ◽  
Elizabeth A Crowley ◽  
Conor P Herlihy ◽  
Amity L Manning

AbstractChromosome instability, or CIN, defined as a high frequency of whole chromosome gains and losses, is prevalent in many solid tumors. CIN has been shown to promote intra-tumor heterogeneity and correspond with tumor aggressiveness, drug resistance and tumor relapse. However, whether CIN promotes the acquisition of genomic changes responsible for drug resistance remain unclear. Here we assess the role of CIN in the acquisition of drug resistance in non small cell lung cancer. We show that impairment of centromeric cohesion underlies the generation of whole chromosome segregation errors and CIN in non small cell lung cancer cells. Further, we demonstrate that centromere-specific enhancement of chromosome cohesion strongly suppresses CIN and reduces intra-tumor heterogeneity. We demonstrate that suppression of CIN has no impact on NSCLC cell proliferation in vitro nor in tumor initiation in mouse xenograft models. However, suppression of CIN alters the timing and molecular mechanism that drive acquired drug resistance. These findings suggest mechanisms to suppress CIN may serve as effective co-therapies to limit tumor evolution and sustain drug response.


1987 ◽  
Vol 56 (4) ◽  
pp. 401-405 ◽  
Author(s):  
S Merry ◽  
ER Courtney ◽  
CA Fetherston ◽  
SB Kaye ◽  
RI Freshney

2021 ◽  
pp. 102304
Author(s):  
Suleyman Gokhan Colak ◽  
Canan Vejselova Sezer ◽  
Ruken Esra Demirdogen ◽  
Mine Ince ◽  
Fatih Mehmet Emen ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Katrina Kildey ◽  
Neha S. Gandhi ◽  
Katherine B. Sahin ◽  
Esha T. Shah ◽  
Eric Boittier ◽  
...  

AbstractPlatinum-based chemotherapy remains the cornerstone of treatment for most non-small cell lung cancer (NSCLC) cases either as maintenance therapy or in combination with immunotherapy. However, resistance remains a primary issue. Our findings point to the possibility of exploiting levels of cell division cycle associated protein-3 (CDCA3) to improve response of NSCLC tumours to therapy. We demonstrate that in patients and in vitro analyses, CDCA3 levels correlate with measures of genome instability and platinum sensitivity, whereby CDCA3high tumours are sensitive to cisplatin and carboplatin. In NSCLC, CDCA3 protein levels are regulated by the ubiquitin ligase APC/C and cofactor Cdh1. Here, we identified that the degradation of CDCA3 is modulated by activity of casein kinase 2 (CK2) which promotes an interaction between CDCA3 and Cdh1. Supporting this, pharmacological inhibition of CK2 with CX-4945 disrupts CDCA3 degradation, elevating CDCA3 levels and increasing sensitivity to platinum agents. We propose that combining CK2 inhibitors with platinum-based chemotherapy could enhance platinum efficacy in CDCA3low NSCLC tumours and benefit patients.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 141
Author(s):  
Iwona Ziółkowska-Suchanek

Hypoxia is the most common microenvironment feature of lung cancer tumors, which affects cancer progression, metastasis and metabolism. Oxygen induces both proteomic and genomic changes within tumor cells, which cause many alternations in the tumor microenvironment (TME). This review defines current knowledge in the field of tumor hypoxia in non-small cell lung cancer (NSCLC), including biology, biomarkers, in vitro and in vivo studies and also hypoxia imaging and detection. While classic two-dimensional (2D) in vitro research models reveal some hypoxia dependent manifestations, three-dimensional (3D) cell culture models more accurately replicate the hypoxic TME. In this study, a systematic review of the current NSCLC 3D models that have been able to mimic the hypoxic TME is presented. The multicellular tumor spheroid, organoids, scaffolds, microfluidic devices and 3D bioprinting currently being utilized in NSCLC hypoxia studies are reviewed. Additionally, the utilization of 3D in vitro models for exploring biological and therapeutic parameters in the future is described.


Sign in / Sign up

Export Citation Format

Share Document