Large-scale network distribution of pooled empty freight cars over time, with limited substitution and equitable benefits

1985 ◽  
Vol 19 (2) ◽  
pp. 85-94 ◽  
Author(s):  
Theodore S. Glickman ◽  
Hanif D. Sherali
Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3819
Author(s):  
Xing Wu ◽  
Jing Duan ◽  
Mingyu Zhong ◽  
Peng Li ◽  
Jianjia Wang

With the advent of the Internet of things (IoT), intelligent transportation has evolved over time to improve traffic safety and efficiency as well as to reduce congestion and environmental pollution. However, there are some challenging issues to be addressed so that it can be implemented to its full potential. The major challenge in intelligent transportation is that vehicles and pedestrians, as the main types of edge nodes in IoT infrastructure, are on the constant move. Hence, the topology of the large scale network is changing rapidly over time and the service chain may need reestablishment frequently. Existing Virtual Network Function (VNF) chain placement methods are mostly good at static network topology and any evolvement of the network requires global computation, which leads to the inefficiency in computing and the waste of resources. Mapping the network topology to a graph, we propose a novel VNF placement method called BVCP (Border VNF Chain Placement) to address this problem by elaborately dividing the graph into multiple subgraphs and fully exploiting border hypervisors. Experimental results show that BVCP outperforms the state-of-the-art method in VNF chain placement, which is highly efficient in large scale IoT of intelligent transportation.


MIS Quarterly ◽  
2016 ◽  
Vol 40 (4) ◽  
pp. 849-868 ◽  
Author(s):  
Kunpeng Zhang ◽  
◽  
Siddhartha Bhattacharyya ◽  
Sudha Ram ◽  
◽  
...  

2014 ◽  
Vol 26 (7) ◽  
pp. 1377-1389 ◽  
Author(s):  
Bo-Cheng Kuo ◽  
Mark G. Stokes ◽  
Alexandra M. Murray ◽  
Anna Christina Nobre

In the current study, we tested whether representations in visual STM (VSTM) can be biased via top–down attentional modulation of visual activity in retinotopically specific locations. We manipulated attention using retrospective cues presented during the retention interval of a VSTM task. Retrospective cues triggered activity in a large-scale network implicated in attentional control and led to retinotopically specific modulation of activity in early visual areas V1–V4. Importantly, shifts of attention during VSTM maintenance were associated with changes in functional connectivity between pFC and retinotopic regions within V4. Our findings provide new insights into top–down control mechanisms that modulate VSTM representations for flexible and goal-directed maintenance of the most relevant memoranda.


Sign in / Sign up

Export Citation Format

Share Document