Conditions of vein formation in the southern Appalachian foreland: constraints from vein geometries and fluid inclusions

1991 ◽  
Vol 13 (10) ◽  
pp. 1173-1183 ◽  
Author(s):  
J.Lincoln Foreman ◽  
William M. Dunne
1990 ◽  
Vol 54 (375) ◽  
pp. 325-333 ◽  
Author(s):  
U. F. Hein ◽  
V. Lüders ◽  
P. Dulski

AbstractThe fluorite vein deposits of the Southern Alps (Northern Italy) exhibit similar geotectonic, paragenetic, and textural characteristics permitting useful comparison between their fluid inclusions and REE systematics. Due to differing post-crystallization deformation, primary fluid inclusions can only be observed in the northernmost deposit (Rabenstein/Corvara). Here, fluorite precipitated from highly saline H2O-NaCl-CaCl2 solutions containing appreciable H2S. During vein formation the fluids changed from low salinity (≈7 wt. % NaCl equiv.) and medium temperature (Th ≈ 230°C), corresponding to the precipitation of early quartz, towards high salinity (≈20 wt.% NaCl equiv.) and lower temperatures (Th ≈170°C during the deposition of late-stage fluorite. This was accompanied by an increase in Ca in solution.REE distribution patterns for the northern deposits are very uniform suggesting a similar source, a large-scale homogeneous fluid system, and fluorite precipitation under reducing conditions. By comparison the southern deposits exhibit contrasting patterns documenting a more complex history, probably due to their remobilization from an earlier mineralization. None of the fluorites shows a ‘primary’ magmatic REE distribution pattern, thereby favouring a genetic model for fluorite mineralization involving the leaching of suitable rock units by formation waters.


2000 ◽  
Vol 64 (6) ◽  
pp. 1007-1016 ◽  
Author(s):  
T. Graupner ◽  
J. Götze ◽  
U. Kempe ◽  
D. Wolf

AbstractCombined cathodoluminescence (CL) and transmitted light microscopy were used to characterize quartz from flat and steeply dipping quartz veins and from veinlets in banded host rocks from the giant Muruntau Au quartz vein deposit, Kyzyl Kum Desert, western Uzbekistan. The CL examinations were carried out using a ‘hot-cathode’ CL microscope linked to a highly sensitive digital video camera. The multi-stage deformed flat quartz veins and the steeply dipping hydrothermal formations at Muruntau are characterized by quartz with different CL colours, internal structures and degree of secondary alteration. Primary growth zoning of quartz, indiscernible in conventional polarized light was found to occur only in steeply dipping veins. The bulk of the high-grade Au mineralized ‘central’ quartz veins is dominated by one generation of hydrothermal quartz; intense brecciation of these veins is indicated by the occurrence of fragments of zoned quartz crystals. Primary growth zoning in quartz may be revealed not only by variations in the intensity of blue CL and/or by primary fluid inclusions arranged within the zones, but also by secondary inclusions and recrystallization phenomena developed along boundary surfaces between the zones. Using the results from CL imaging and microstructural analysis of the quartz, fluid inclusions investigated earlier were assigned to genetic types; the evidence of probably primary inclusions is of considerable importance for further studies of the geochemical conditions during vein formation. Considering geological and mineralogical data, CL studies of vein quartz may help to reveal the history of precipitation, deformation and recrystallization processes in the Muruntau Au ore field.


2012 ◽  
Vol 49 (1) ◽  
pp. 359-378 ◽  
Author(s):  
Joanna Potter ◽  
Frederick J. Longstaffe ◽  
Sandra M. Barr

Fluids responsible for regional 18O-depletion of Neoproterozoic igneous rocks in Avalonia are investigated here through a petrographic, microthermometric, and stable isotopic examination of fluid inclusions and minerals from the abundant vein networks of the Mira terrane, Cape Breton Island. Six categories of vein assemblages — from oldest to youngest — are present: (i) quartz–albite, (ii) quartz–epidote, (iii) quartz, (iv) quartz–chlorite–calcite, (v) quartz–calcite, and (vi) calcite. Vein system temperatures were initially as high as ∼300 °C and gradually decreased to ∼200 °C. Moderate salinities (<8 equivalent wt.% NaCl) characterize entrapped fluids in the early quartz–albite veins but decrease in later quartz–epidote and quartz–calcite veins to <1 equiv. wt.% NaCl. The limited range of fluid δ18O values (–1.9‰ to +1.4‰) calculated for most of the vein assemblages is suggestive of a seawater-dominated system, as are the δDH2O values (–12‰ to –3‰) obtained for epidote. Decreasing fluid salinities, however, suggest that meteoric water became dominant during later stages of vein formation. The carbon isotopic compositions of trace CO2 and CH4 from the fluid inclusions (δ13CCO2 = –22‰ to –4‰; δ13CCH4 = –52‰ to –37‰) are indicative of externally derived (i.e., non-magmatic) fluids of organic origin.


Sign in / Sign up

Export Citation Format

Share Document