The fluorite vein mineralization of the southern Alps: combined application of fluid inclusions and rare earth element (REE) distribution

1990 ◽  
Vol 54 (375) ◽  
pp. 325-333 ◽  
Author(s):  
U. F. Hein ◽  
V. Lüders ◽  
P. Dulski

AbstractThe fluorite vein deposits of the Southern Alps (Northern Italy) exhibit similar geotectonic, paragenetic, and textural characteristics permitting useful comparison between their fluid inclusions and REE systematics. Due to differing post-crystallization deformation, primary fluid inclusions can only be observed in the northernmost deposit (Rabenstein/Corvara). Here, fluorite precipitated from highly saline H2O-NaCl-CaCl2 solutions containing appreciable H2S. During vein formation the fluids changed from low salinity (≈7 wt. % NaCl equiv.) and medium temperature (Th ≈ 230°C), corresponding to the precipitation of early quartz, towards high salinity (≈20 wt.% NaCl equiv.) and lower temperatures (Th ≈170°C during the deposition of late-stage fluorite. This was accompanied by an increase in Ca in solution.REE distribution patterns for the northern deposits are very uniform suggesting a similar source, a large-scale homogeneous fluid system, and fluorite precipitation under reducing conditions. By comparison the southern deposits exhibit contrasting patterns documenting a more complex history, probably due to their remobilization from an earlier mineralization. None of the fluorites shows a ‘primary’ magmatic REE distribution pattern, thereby favouring a genetic model for fluorite mineralization involving the leaching of suitable rock units by formation waters.

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259004
Author(s):  
Facheng Ye ◽  
G. R. Shi ◽  
Maria Aleksandra Bitner

The global distribution patterns of 14918 geo-referenced occurrences from 394 living brachiopod species were mapped in 5° grid cells, which enabled the visualization and delineation of distinct bioregions and biodiversity hotspots. Further investigation using cluster and network analyses allowed us to propose the first systematically and quantitatively recognized global bioregionalization framework for living brachiopods, consisting of five bioregions and thirteen bioprovinces. No single environmental or ecological variable is accountable for the newly proposed global bioregionalization patterns of living brachiopods. Instead, the combined effects of large-scale ocean gyres, climatic zonation as well as some geohistorical factors (e.g., formation of land bridges and geological recent closure of ancient seaways) are considered as the main drivers at the global scale. At the regional scale, however, the faunal composition, diversity and biogeographical differentiation appear to be mainly controlled by seawater temperature variation, regional ocean currents and coastal upwelling systems.


2003 ◽  
Vol 35 (1) ◽  
pp. 33-53 ◽  
Author(s):  
Robert Lücking

AbstractTakhtajan's floristic regions of the world, based on vascular plant distribution, were used for a comparative analysis of foliicolous lichen biogeography. Of the 35 regions distinguished by that author, 23 feature foliicolous lichens. The South-East African, Fijian, Polynesian and Hawaiian regions lack sufficient information and were excluded from further analysis. Using multi-dimensional scaling and cluster and cladistic analyses, the remaining 19 regions were grouped into six lichenogeographical regions: (1) Neotropics, (2) African Paleotropics (including Madagascar, Réunion and Seychelles), (3) Eastern Paleotropics (including North-East Australia and New Caledonia), (4) Valdivian region (temperate rainforest in southern South America), (5) Tethyan region (subtropical areas of Macaronesia, Mediterranean, and Western Irano-Turanian) and (6) Neozealandic-Tasmanian region (temperate rainforests of New Zealand and Tasmania). Affinities between these six large scale regions, with 57–77% shared species, are still stronger than those between the 35 smaller scale regions denned by Takhtajan [(20−)40–60(−75)% shared species]. Based on presence/absence within each of the six regions, 22 potential distribution patterns were defined for foliicolous lichens. Many species are widely distributed; 21% are cosmopolitan or pantropical, while 19% are disjunct on at least two continents, and only 60% are restricted to one of the three major tropical areas (nearly 100% in vascular plants). Most of the latter are found in the Neotropics, while the African Paleotropics are poor in endemics. Most genera deviate significantly from overall distribution patterns; for example, Strigula and Calopadia have higher proportions of widely distributed species, while Porina displays a concentration of Eastern Paleotropical endemics. Species diversity and composition of the six regions indicate that the three extra-tropical foliicolous lichen biotas (Valdivian, Tethyan, Neozealandic-Tasmanian) are the result of partly separate evolutionary histories. On the other hand, there is a strong affinity between the Neotropics and the African Paleotropics, suggesting a shared Western Gondwanan element in the foliicolous lichen biotas of these two regions.


2014 ◽  
Vol 11 (93) ◽  
pp. 20131071 ◽  
Author(s):  
Nina Alphey ◽  
Michael B. Bonsall

Some proposed genetics-based vector control methods aim to suppress or eliminate a mosquito population in a similar manner to the sterile insect technique. One approach under development in Anopheles mosquitoes uses homing endonuclease genes (HEGs)—selfish genetic elements (inherited at greater than Mendelian rate) that can spread rapidly through a population even if they reduce fitness. HEGs have potential to drive introduced traits through a population without large-scale sustained releases. The population genetics of HEG-based systems has been established using discrete-time mathematical models. However, several ecologically important aspects remain unexplored. We formulate a new continuous-time (overlapping generations) combined population dynamic and genetic model and apply it to a HEG that targets and knocks out a gene that is important for survival. We explore the effects of density dependence ranging from undercompensating to overcompensating larval competition, occurring before or after HEG fitness effects, and consider differences in competitive effect between genotypes (wild-type, heterozygotes and HEG homozygotes). We show that population outcomes—elimination, suppression or loss of the HEG—depend crucially on the interaction between these ecological aspects and genetics, and explain how the HEG fitness properties, the homing rate (drive) and the insect's life-history parameters influence those outcomes.


2021 ◽  
Author(s):  
Costantino Zuccari ◽  
Giulio Viola ◽  
Gianluca Vignaroli ◽  
Luca Aldega

<p>Despite significant recent progress in the understanding and quantification of the parameters controlling deformation modes in carbonate multilayers within fold-and-thrust belts, the details of early deformation and faulting during the initial stages of large-scale thrusting remain poorly documented and understood. Aiming to narrow this knowledge gap, we have chosen to study the relatively low-strain carbonate multilayer footwall of the Belluno Thrust (BT), one of the most external and S-vergent thrusts of the eastern Southern Alps (Italy). The BT footwall is composed of a c. 600 m thick Meso-Cenozoic multilayer succession of shallow water carbonate and pelagic sedimentary units characterized by strong mineralogical heterogeneity, with calcite (32-98%), sheet silicates (1-27%), and quartz (1-37%) as principal components. Its structural framework reflects cumulative strain due to multiple deformation events and is defined by the superposition of different structures such as i) south-verging asymmetric folds, ii) faulted folds, cut by slip planes with centimetric to metric throw, iii) SC-C’ fabrics in the marly layers, and iv) cataclastic domains.  Structures recording the early shortening increments are generally well preserved mesoscopic upright folds. Asymmetric folds with gently N-dipping backlimbs and steeply S-dipping (or even overturned N-dipping) forelimbs, record further shortening of the early upright and symmetrical folds. Strain is strongly partitioned within the marly layers, with discrete faults commonly defined by multiple slip surfaces forming duplex geometries and SC-C’ fabrics and exploiting millimetric to centimetric marly beds as detachment layers. Thrusts and diffuse reverse faults not associated with any cataclasite localise along the backlimbs of the asymmetric folds, suggesting dominant layer-parallel shortening. Cataclasites develop instead along the thrust surfaces that cut across the steeply dipping (locally even overturned) forelimbs, where cataclastic flow becomes the dominant deformation mechanism. On the vertical forelimbs, cataclasis and strain localisation are commonly associated with veins, which contributed to harden the rock system.  </p><p>Based on our systematic observations, we propose that deformation progressively evolved from folding and layer-parallel shortening (initial phases) to faulting and cataclasis (final phases) as a function of the dynamic interplay of the following factors: i) the geometrical relationships between fault orientation, fold attitude (forelimb and backlimb domains) and stress field, ii) the lithotype, which we conveniently account for by referring to the ratio between the cumulative thickness of the outcrop marly layers and the total measured stratigraphic thickness, iii) the involvement of fluids during deformation, iv) the mineral assemblage of the involved layers and v) the geometric framework of the domain localising strain with respect to the principal stress axes orientation. We conclude that these parameters play a major role in guiding strain localisation and partitioning during continuous shortening within fold-and-thrust belts. They also govern the transition from overall aseismic creep to coseismic rupturing at the scale of mesoscopic structures and, possibly, of the entire belt.</p>


Database ◽  
2019 ◽  
Vol 2019 ◽  
Author(s):  
Rui Zhang ◽  
Fangfang Ge ◽  
Huayang Li ◽  
Yudong Chen ◽  
Ying Zhao ◽  
...  

Abstract Inverted repeats (IRs) serve as potential biomarkers for genomic instability, DNA replication and other genetic processes. However, little information can be found in databases to help researchers recognize potential IR nucleotides, explore junction sites and annotate related functional genes. Plant Chloroplast Inverted Repeats (PCIR) is an interactive, web-based platform containing various sequenced chloroplast genomes that enables detection, searching and visualization of large-scale detailed information on IRs. PCIR contains many datasets, including 21 433 IRs, 113 plants chloroplast genomes, 16 948 functional genes and 21 659 visual maps. This database offers an online prediction tool for detecting IRs based on DNA sequences. PCIR can also analyze phylogenetic relationships using IR information among different species and provide users with high-quality marker maps. This database will be a valuable resource for IR distribution patterns, related genes and architectural features.


Minerals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 713 ◽  
Author(s):  
Lü-Yun Zhu ◽  
Shao-Yong Jiang ◽  
Run-Sheng Chen ◽  
Ying Ma

The Shangfang deposit is a recently discovered large-scale tungsten deposit (66,500 t at 0.23% WO3), which is located near the western boundary of the Southeastern Coastal Metallogenic Belt (i.e., Zhenghe–Dafu fault), and adjacent to the northeast of the Nanling Range Metallogenic Belt. Unlike many other W–Sn deposits in this region that occur within or near the granites, the orebodies in the Sangfang deposit all occur within the amphibolite of Palaeoproterozoic Dajinshan Formation and have no direct contact to the granite. In this study, we carry out a thermal ionization mass spectrometer (TIMS) Sm-Nd isotope analysis for the scheelites from the orebody, which yields a Sm–Nd isochron age of 157.9 ± 6.7 Ma (MSWD = 0.96). This age is in good agreement with the previously published zircon U–Pb age (158.8 ± 1.6 Ma) for the granite and the molybdenite Re–Os age (158.1 ± 5.4 Ma) in the deposit. Previous studies demonstrated that the W–Sn deposits occurring between Southeastern Nanling Range and Coastal Metallogenic Belt mainly formed in the two periods of 160–150 Ma and 140–135 Ma, respectively. The microthermometry results of fluid inclusions in scheelite and quartz are suggestive of a near-isothermal (possibly poly-baric) mixing between two fluids of differing salinities. The H–O isotope results illustrate that the ore-forming fluids are derived from magma and might be equilibrated with metamorphic rocks at high temperature. The Jurassic granite pluton should play a critical role for the large hydrothermal system producing the Shangfang W deposit. Furthermore, the negative εNd(t) of −14.6 obtained in the Shanfang scheelite suggests for the involvement of the deep crustal materials. In general, subduction of the paleo-Pacific plate caused an extensional tectonic setting with formation of the Shangfang granites and related W mineralization, the geological background of which is similar to other W deposits in the Nanling Range Metallogenic Belt.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Dragos G. Zaharescu ◽  
Carmen I. Burghelea ◽  
Katerina Dontsova ◽  
Jennifer K. Presler ◽  
Edward A. Hunt ◽  
...  

Abstract Ecosystem-bedrock interactions power the biogeochemical cycles of Earth’s shallow crust, supporting life, stimulating substrate transformation, and spurring evolutionary innovation. While oxidative processes have dominated half of terrestrial history, the relative contribution of the biosphere and its chemical fingerprints on Earth’s developing regolith are still poorly constrained. Here, we report results from a two-year incipient weathering experiment. We found that the mass release and compartmentalization of major elements during weathering of granite, rhyolite, schist and basalt was rock-specific and regulated by ecosystem components. A tight interplay between physiological needs of different biota, mineral dissolution rates, and substrate nutrient availability resulted in intricate elemental distribution patterns. Biota accelerated CO2 mineralization over abiotic controls as ecosystem complexity increased, and significantly modified the stoichiometry of mobilized elements. Microbial and fungal components inhibited element leaching (23.4% and 7%), while plants increased leaching and biomass retention by 63.4%. All biota left comparable biosignatures in the dissolved weathering products. Nevertheless, the magnitude and allocation of weathered fractions under abiotic and biotic treatments provide quantitative evidence for the role of major biosphere components in the evolution of upper continental crust, presenting critical information for large-scale biogeochemical models and for the search for stable in situ biosignatures beyond Earth.


The late Pliocene phase of large-scale climatic deterioration about 3.2-2.4 Ma BP is well documented in a number of (benthic) δ 18 O records. To test the global implications of this event, we have mapped the distribution patterns of various sediment variables in the Pacific and Atlantic Oceans during two time slices, 3.4-3.18 and 2.43-2.33 Ma BP. The changes of bulk sedimentation and bulk sediment accumulation rates are largely explained by the variations of CaCO 3 -accumulation rates (and the accumulation rates of the complementary siliciclastic sediment fraction near continents in higher latitudes). During the late Pliocene, the CaCO 3 -accumulation rate increased along the equatorial Pacific and Atlantic and in the northeastern Atlantic, but decreased elsewhere. The accumulation rate of organic carbon (C org ) and net palaeoproductivity also increased below the high-productivity belts along the equator and the eastern continental margins. From these patterns we may conclude that (trade-) wind- induced upwelling zones and upwelling productivity were much enhanced during that time. This change led to an increased transfer of CO 2 from the surface ocean to the ocean deep water and to a reduction of evaporation, which resulted in an aridification of the Saharan desert belt as depicted in the dust sediments off northwest Africa.


Sign in / Sign up

Export Citation Format

Share Document