Negative signal transmission through class II molecules on activated T cells

1991 ◽  
Vol 31 (3) ◽  
pp. 170-179 ◽  
Author(s):  
Nancy D. Urban ◽  
Karen S. Zier
1992 ◽  
Vol 35 (1) ◽  
pp. 50-59 ◽  
Author(s):  
Assia Eljaafari ◽  
Isabelle Dorval ◽  
Dominique Zeliszewski ◽  
Sylvie Le Gac ◽  
Ghislaine Sterkers

1997 ◽  
Vol 352 (1359) ◽  
pp. 1327-1330 ◽  
Author(s):  
Brigitte Müller ◽  
Avrion Mitchison

It has long been known that certain MHC class II genes can dominantly suppress immune responses and so increase susceptibility to parasite infections, but the mechanism has been unclear. Recent work has revealed one way in which this form of suppression may operate through gating by MHC class II molecules of the back–signal from activated T cells into macrophages. The two known suppressive genes of the mouse are expressed in macrophages more extensively than are other class II genes. This is asscociated with suppresion of IL–4 production resulting, we infer, from overproduction in the macrophages of IL–12, the counter–cytokine to IL–4. The lack of IL–4 may itself be immunosuppressive, even for Th2 responses, and excess IL–12 can overinduce the antiproliferative cytokine IFN–gamma. Although this mechanism requires further substantiation, we believe that it offers a reasonable answer to an old conundrum.


1994 ◽  
Vol 180 (5) ◽  
pp. 1967-1972 ◽  
Author(s):  
G Remuzzi ◽  
M Noris ◽  
A Benigni ◽  
O Imberti ◽  
M H Sayegh ◽  
...  

Recent in vitro studies have documented that thromboxane (Tx)A2 induces thymocyte apoptosis by acting on specific receptors abundantly expressed on the surface of immature T lymphocytes. No information is available on the in vivo relevance of this observation in development of self- or acquired tolerance. We and others have previously documented that injection of donor cells into adult thymus of experimental animals induced specific systemic unresponsiveness to allografts in the rat and mouse models. More recently, we have shown that intrathymic injection of synthetic class II major histocompatibility complex (MHC) allopeptides resulted in donor-specific unresponsiveness to renal allografts. The induction of unresponsiveness was abrogated by recipient thymectomy within the first week. We now report the effect of TxA2 blockade on acquired thymic tolerance to renal allografts induced by intrathymic injection of synthetic class II MHC allopeptides in the Wistar-Furth (WF) to Lewis rat strain combination. Administration of the TxA2 receptor blocker prior to transplantation or 2 wk postengraftment completely abrogated the unresponsive state. In addition, inhibiting the TxA2-forming enzyme by aspirin or dexamethasone also abolished the induction of acquired thymic tolerance. Evidence is also provided for a critical "dose" of peptides to be injected into the thymus to induce systemic unresponsiveness to renal allografts. These data, coupled with observations that activated peripheral T cells can circulate through the thymus, provide evidence that TxA2/TxA2 receptor interaction in the thymic microenvironment, leading to anergy/programmed cell death of activated T cells, may play an important role in the development of acquired unresponsiveness in vivo.


1991 ◽  
Vol 21 (1) ◽  
pp. 123-129 ◽  
Author(s):  
Niels Ødum ◽  
Paul J. Martin ◽  
Gary L. Schieven ◽  
John A. Hansen ◽  
Jeffrey A. Ledbetter

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5164-5164
Author(s):  
Avital Amir ◽  
Menno A.W.G. van der Hoorn ◽  
Erik W.A. Marijt ◽  
Michel G.D. Kester ◽  
Roelof Willemze ◽  
...  

Abstract HLA mismatched Stem Cell Transplantation (SCT) can be performed in patients with leukemia if no HLA identical donor can be found. Although HLA class I is expressed by almost all recipient cells and the frequency of allo-HLA reactive T-cells is high in all normal donors, the risk of GVHD after single locus mismatched SCT is comparable to that after HLA identical SCT. Thus, the occurrence of GVHD may not simply be explained by recognition of the mismatched HLA by allo-HLA reactive T-cells. Therefore, we characterized in detail the nature of the allo-immune response in an HLA mismatched setting. A patient with acute myeloid leukemia was treated with T-cell depleted SCT from a sibling donor who was HLA identical except for an HLA-A2 crossover. 6 Months after SCT, Donor Lymphocyte Infusion (DLI) of 2.5*10e6 CD3+ T-cells/kg was given for mixed chimerism caused by persistence of patient T-cells. No clinical response and no GVHD developed. 12 months after SCT the leukemia relapsed with 9% blasts in bone marrow, and a second DLI of 7.5*10e6 CD3+ T-cells/kg was given. The patient died of grade IV GVHD 5 weeks after DLI. durign the GVHD flow cytometry of PBMC’s showed conversion of patient to donor type T-cells. 80% Of the CD8 and 40% of the CD4 T-cells were activated, as determined by co-expression of HLA-DR. These activated T-cells were single cell sorted, non-specifically expanded, and tested for alloreactivity using cytotoxicity and cytokine production assays. 46 Out of 56 isolated CD8 clones and 7 out of 88 CD4 clones recognized patient but not donor target cells, indicating that at the time of the GVHD almost 70% of circulating T-cells were alloreactive. The response was highly polyclonal as shown by usage of at least 13 different TCR Vβs by the CD8 clones, and 6 by the CD4 clones. HLA restriction of the clones was tested with HLA blocking antibodies, a panel of HLA-typed target cells and donor EBV-LCL transduced with HLA-A2. All alloreactive CD8 clones were HLA-A2 specific. To further characterize the specificity, CD8 clones were tested against T2 cells loaded with HPLC fractions of peptides eluted from HLA-A2. Some CD8 clones recognized HLA-A2 with all different HPLC fractions, indicating peptide-independent recognition. Other clones recognized one fraction indicating peptide specificity, or several fractions indicating “promiscuous” peptide recognition. The CD4 clones were HLA-DR1 restricted and recognized donor EBV-LCL transduced with HLA-A2, indicating that the peptide recognized in HLA-DR1 was derived from the mismatched HLA-A2 molecule. Therefore, CD4 clones were tested against different peptides covering the whole HLA-A2 sequence. All clones recognized epitope 101–122 derived from a hyper variable region of HLA-A2. These results indicate that the GVHD in this HLA-A2 mismatched transplantation was caused by a combined highly polyclonal CD8 response directed against the HLA-A2 molecule and a CD4 response recognizing an HLA-A2 derived peptide presented by HLA class II. We speculate that the absence of an immune response observed after the first DLI despite high frequency of allo-HLA reactive T-cells, indicates that CD8 anti-HLA-A2 T-cells are insufficient to cause severe GVHD. We hypothesize that the rise of HLA-DR expressing leukemic blasts presenting HLA-A2 derived peptide in HLA class II triggered the CD4 response which was necessary to initiate the CD8 alloresponse resulting in this clinical outcome.


1988 ◽  
Vol 23 (2) ◽  
pp. 130
Author(s):  
Shuichi Oshima ◽  
David D. Eckels

2005 ◽  
Vol 25 (22) ◽  
pp. 9936-9948 ◽  
Author(s):  
Yan-Shan Dai ◽  
Jian Xu ◽  
Jeffery D. Molkentin

ABSTRACT The calcium-regulated protein phosphatase calcineurin (PP2B) functions as a regulator of gene expression in diverse tissues through the dephosphorylation and activation of a family of transcription factors known as nuclear factor of activated T cells (NFAT). Here we show that NFATc3, in addition to being calcium responsive, is regulated through an indirect recruitment of class II histone deacetylases (HDACs). Specifically, yeast two-hybrid screening with the rel homology domain of NFATc3 identified the chaperone mammalian relative of DnaJ (Mrj) as a specific interacting factor. Mrj and NFATc3 were shown to directly associate with one another in mammalian cells and in vitro. Mrj served as a potent inhibitor of NFAT transcriptional activity within the nucleus through a mechanism involving histone deacetylase recruitment in conjunction with heat shock stimulation. Indeed, Mrj was determined to interact with class II histone deacetylases, each of which translocated to the nucleus following heat shock stimulation. Mrj also decreased NFATc3 occupancy of the tumor necrosis factor-α promoter in cardiomyocytes in an HDAC-dependent manner, and Mrj blocked calcineurin-induced cardiomyocyte hypertrophic growth. Conversely, small-interfering-RNA-mediated reduction of Mrj augmented NFAT transcriptional activity and spontaneously induced cardiac myocyte growth. Collectively, our results define a novel response pathway whereby NFATc3 is negatively regulated by class II histone deacetylases through the DnaJ (heat shock protein-40) superfamily member Mrj.


Sign in / Sign up

Export Citation Format

Share Document