Characterization of TiN-coated high speed steel cutting edges by load-indentation measurements

1996 ◽  
Vol 79 (1-3) ◽  
pp. 225-230 ◽  
Author(s):  
B. Rother ◽  
H. Kappl ◽  
I. Pfeifer-Schäller ◽  
H.A. Jehn
1986 ◽  
Vol 4 (6) ◽  
pp. 2879-2884 ◽  
Author(s):  
G. Fenske ◽  
N. Kaufherr ◽  
C. Albertson ◽  
G. Mapalo ◽  
R. Nielsen ◽  
...  

2009 ◽  
Vol 131 (4) ◽  
Author(s):  
Michael R. Lovell ◽  
P. Cohen ◽  
Pradeep L. Menezes ◽  
R. Shankar

When machining miniaturized components, the contact conditions between the tool and the workpiece exhibit very small contact areas that are on the order of 10−5 mm2. Under these conditions, extremely high contact stresses are generated, and it is not clear whether macroscopic theories for the chip formation, cutting forces, and friction mechanisms are applicable. For this reason, the present investigation has focused on creating a basic understanding of the frictional behavior in very small scale machining processes so that evaluations of standard macroscale models could be performed. Specialized machining experiments were conducted on 70/30 brass materials using high-speed steel tools over a range of speeds, feeds, depths of cut, and tool rake angles. At each operating condition studied, the friction coefficient and the shear factor τk were obtained. Based on the experimental results, it was determined that the standard macroscopic theory for analyzing detailed friction mechanisms was insufficient in very small scale machining processes. An approach that utilized the shear factor, in contrast, was found to be better for decoupling the physical phenomena involved. Utilizing the shear factor as an analysis parameter, the parameters that significantly influence the friction in microscale machining processes were ascertained and discussed.


1972 ◽  
Vol 4 (6) ◽  
pp. 516-518
Author(s):  
V. Ya. Bulanov ◽  
A. P. Shevel ◽  
P. A. Yudkovskii

2010 ◽  
Vol 25 (6) ◽  
pp. 1164-1171 ◽  
Author(s):  
A. Schlieter ◽  
U. Kühn ◽  
J. Eckert ◽  
H-J. Seifert

Systematic microstructural and mechanical investigations of the Fe84.3Cr4.3Mo4.6V2.2C4.6 alloy cast under special manufacturing conditions in the as-cast state and after specific heat treatment are presented to point out that the special manufacturing of the alloy led to high compression strength (up to 4680 MPa) combined with large fracture strain (about 20%) already in the as-cast state. One select chemical composition of the alloy, which was mentioned previously [Kühn et al., Appl. Phys. Lett.90, 261901 (2007)] enhanced mechanical properties already in the as-cast state. Furthermore, that composition is comparable to commercial high-speed steel. By the special manufacturing used, a high purity of elements and a high cooling rate, which led to a microstructure similar to a composite-like material, composed of dendritic area (martensite, bainite, and ferrite) and interdendritic area (e.g., complex carbides). The presented article demonstrates an alloy that exhibits already in the as-cast state high fracture strength and large ductility. Furthermore, these outstanding mechanical properties remain unchanged after heating up to 873 K.


Sign in / Sign up

Export Citation Format

Share Document