Determination of the elastic properties of lightweight aggregate by ultrasonic pulse velocity measurement

Author(s):  
J. Müller-Rochholz
2018 ◽  
Vol 276 ◽  
pp. 35-40
Author(s):  
Romana Halamová ◽  
Dalibor Kocáb ◽  
Barbara Kucharczyková ◽  
Petr Daněk ◽  
Petr Misák

This paper deals with the possibilities of experimental determination of the dynamic and static modulus of elasticity of fine-grained cement composites in the early stage of setting and hardening - up to 72 hours. Several cement pastes and cement mortars were produced for the purpose of this experiment. The measurement of the modulus of elasticity on the manufactured cement-based composites was carried out in the first 24 hours, each time only by the ultrasonic pulse velocity test using the innovative Vikasonic instrument. In the following 48 hours, the resonance method and the static load test were employed. The results of the pilot measurement and particularly the assessment of the possibilities of determination of the moduli of elasticity are presented in this paper.


Author(s):  
Christopher Collins ◽  
Saman Hedjazi

In the present study, a non-destructive testing method was utilized to assess the mechanical properties of lightweight and normal-weight concrete specimens. The experiment program consisted of more than a hundred concrete specimens with the unit weight ranging from around 850 to 2250 kg/m3. Compressive strength tests were performed at the age of seven and twenty eight days. Ultrasonic Pulse Velocity (UPV) was the NDT that was implemented in this study to investigate the significance of the correlation between UPV and compressive strength of lightweight concrete specimens. Water to cement ratio (w/c), mix designs, aggregate volume, and the amount of normal weight coarse and fine aggregates replaced with lightweight aggregate, are the variables in this work. The lightweight aggregate used in this study, Poraver®, is a product of recycled glass materials. Furthermore, the validity of the current prediction methods in the literature was investigated including comparison between this study and an available expression in the literature on similar materials, for calculation of mechanical properties of lightweight concrete based on pulse velocity. It was observed that the recently developed empirical equation would better predict the compressive strength of lightweight concrete specimens in terms of the pulse velocity.


Sign in / Sign up

Export Citation Format

Share Document