refractory materials
Recently Published Documents


TOTAL DOCUMENTS

1210
(FIVE YEARS 129)

H-INDEX

31
(FIVE YEARS 4)

2021 ◽  
Vol 9 (2) ◽  
pp. 1-7
Author(s):  
Bilal Ibrahim Dan-Iya ◽  
Mohd Yunus Shukor

Because of its extensive usage in industrial applications such as leather tanning, metallurgy, electroplating, and refractory materials, chromium is one of the most dangerous trace elements introduced into surface and ground waters. The sorption isotherm of chromium sorption onto calcium alginate nanoparticles were analyzed using ten models—Henry, Langmuir, Dubinin-Radushkevich, Freundlich, BET, Toth, Sips, Fritz-Schlunder IV, Baudu and Fritz-Schlunder V, and fitted using non-linear regression. Only the Toth and Fritz-Schlunder V models were unable to fit the data. Statistical analysis based on root-mean-square error (RMSE), adjusted coefficient of determination (adjR2), bias factor (BF), accuracy factor (AF), corrected AICc (Akaike Information Criterion), BIC and HQC showed that the Langmuir model was the best model in terms of overall best criteria. The calculated evidence ratio was 7 with an AICc probability value of 0.87 indicating that the best model was at least 7 times better than the nearest best model, which was Freundlich. The calculated Langmuir parameters qmL value of 79.174 mg/g (95% confidence interval from 50.702 to 107.646) and bL value of 0.332 L/mg (95% confidence interval from 0.294 to 0.371) is not much different from the linearized published work for the qmL value of 145 mg/g but lower than the bL value of 0.34 L/mg. The nonlinear regression method allows for the parameter values to be represented in the 95% confidence interval range which can better allow comparison with published results.


Author(s):  
В.О. Попов ◽  
В.Н. Комов ◽  
Е.М. Попенко ◽  
А.В. Сергиенко

Данная статья посвящена исследованию влияния пористости прессованных таблеток из сверхтонкого порошка алюминия (СТП Al). Определен механизм горения, протекающий в две стадии: первая, медленная, включающая в себя как «кольцевое» горение боковой поверхности, так и параллельное горение концентрическими слоями, вторая стадия объемная, сопровождающаяся резким самопроизвольным увеличением температуры горения и интенсивности свечения. Показано, что увеличение плотности упаковки СТП Al позволяет замедлить процесс окисления алюминия более чем в два раза. Это обусловлено снижением газопроницаемости таблетки и затруднением доступа воздуха вглубь образца. Повышение пористости материала позволяет регулировать процесс нитридообразования за счёт увеличения содержания азота в продуктах при фильтрационном механизме горения, что открывает возможности получения тугоплавких материалов. This article is devoted to the study of the effect of porosity of compressed tablets from ultrafine aluminum powder (STP Al). The combustion mechanism was determined, which proceeds in two stages: the first, slow, which includes both "ring" combustion of the side surface and parallel combustion with concentric layers, the second stage is volumetric, accompanied by a sharp spontaneous increase in the combustion temperature and glow intensity. It has been shown that an increase in the packing density of HFC Al makes it possible to slow down the process of aluminum oxidation by more than two times. This is due to a decrease in the gas permeability of the tablet and the difficulty of air access deep into the sample. An increase in the porosity of the material makes it possible to regulate the process of nitride formation by increasing the nitrogen content in the products during the filtration mechanism of combustion, which opens up the possibility of obtaining refractory materials.


Clean Energy ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 731-740
Author(s):  
Baozi Peng ◽  
Shixian Zhao ◽  
Zhen Liu

Abstract Utilizing the extraction residue (ER) of direct coal liquefaction residue as a gasification feedstock has significant economic value. But the characteristic of high ash and iron in the ER would increase the risk of corrosion of the refractory materials and affect the long-term operation of the gasifier. In this work, corrosion experiments of molten slag derived from a mixture of 20 wt% ER and 80 wt% coal on a high-chromia refractory brick and SiC brick were carried out using a rotary-drum furnace in a simulated gasification atmosphere. The experimental results show that the viscosity of the poured slag is larger as compared to the initial ash sample at the same temperature, which suggests that the viscosity–temperature relationship of the poured slag should be used as the reference for the operation temperature of the gasifier to ensure that the slag can flow during operation. For a high-chromia refractory brick, iron oxides in molten slag could react with Cr2O3 in the refractory matrix but, because the aggregate was not found to be damaged, the damage to the matrix structure was the key factor for causing the corrosion of the high-chromia refractory brick. Metallic iron was observed in the exposed SiC brick, which indicated that the reaction between the iron oxides in the slag and SiC occurred, forming metallic iron and SiO2. The corrosion of a SiC brick by molten slag depended mainly on the dissolution of Al2O3 particles and the reaction between iron oxides in the molten slag and SiC particles. Therefore, the high iron content in coal ash had a serious influence on the corrosion of refractory materials. More efforts need to be made on coal blended with ER as a gasification feedstock in the future.


2021 ◽  
Vol 325 ◽  
pp. 188-193
Author(s):  
Lenka Nevřivová ◽  
David Zemánek

The development and subsequent production of these special kind of grog from raw materials available in the Czech Republic is one of the possibilities how to reduce income costs for the production of refractory materials with specific properties. The experimental work is focused on verifying the possibility of producing grog with increased alumina content from available raw materials. The raw materials are kaolins and claystones. To achieve a higher content of alumina in the grog, waste mullite dust is used. In order to improve the physical and mechanical properties of the grog, modifiers are used. Selected modifiers are expected to affect positively on the resulting density while maintaining the heat properties.


2021 ◽  
Vol 29 (3) ◽  
pp. 21-27
Author(s):  
P.A. Plokhikh ◽  
◽  
M.A. Vozhol ◽  
Yu.V. Khavalits ◽  
P.A. Plokhikh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document