Experimental Determination of Modulus of Elasticity of Concrete by Non-Destructive Ultrasonic Pulse Velocity Method

Author(s):  
Ivan Ivanchev
2011 ◽  
Vol 243-249 ◽  
pp. 165-169 ◽  
Author(s):  
Iqbal Khan Mohammad

Nondestructive testing (NDT) is a technique to determine the integrity of a material, component or structure. The commonly NDT methods used for the concrete are dynamic modulus of elasticity and ultrasonic pulse velocity. The dynamic modulus of elasticity of concrete is related to the structural stiffness and deformation process of concrete structures, and is highly sensitive to the cracking. The velocity of ultrasonic pulses travelling in a solid material depends on the density and elastic properties of that material. Non-destructive testing namely, dynamic modulus of elasticity and ultrasonic pulse velocity was measured for high strength concrete incorporating cementitious composites. Results of dynamic modulus of elasticity and ultrasonic pulse velocity are reported and their relationships with compressive strength are presented. It has been found that NDT is reasonably good and reliable tool to measure the property of concrete which also gives the fair indication of the compressive strength development.


2018 ◽  
Vol 276 ◽  
pp. 35-40
Author(s):  
Romana Halamová ◽  
Dalibor Kocáb ◽  
Barbara Kucharczyková ◽  
Petr Daněk ◽  
Petr Misák

This paper deals with the possibilities of experimental determination of the dynamic and static modulus of elasticity of fine-grained cement composites in the early stage of setting and hardening - up to 72 hours. Several cement pastes and cement mortars were produced for the purpose of this experiment. The measurement of the modulus of elasticity on the manufactured cement-based composites was carried out in the first 24 hours, each time only by the ultrasonic pulse velocity test using the innovative Vikasonic instrument. In the following 48 hours, the resonance method and the static load test were employed. The results of the pilot measurement and particularly the assessment of the possibilities of determination of the moduli of elasticity are presented in this paper.


2021 ◽  
Vol 318 ◽  
pp. 03004
Author(s):  
AbdulMuttalib I. Said ◽  
Baqer Abdul Hussein Ali

This paper has carried out an experimental program to establish a relatively accurate relation between the ultrasonic pulse velocity (UPV) and the concrete compressive strength. The program involved testing concrete cubes of (100) mm and prisms of (100×100×300) cast with specified test variables. The samples are tested by using ultrasonic test equipment with two methods, direct ultrasonic pulse (DUPV) and surface (indirect) ultrasonic pulse (SUPV) for each sample. The obtained results were used as input data in the statistical program (SPSS) to predict the best equation representing the relation between the compressive strength and the ultrasonic pulse velocity. In this research 383 specimens were tested, and an exponential equation is proposed for this purpose. The statistical program has been used to prove which type of UPV is more suitable, the (SUPV) test or the (DUPV) test, to represent the relation between the ultrasonic pulse velocity and the concrete compressive strength. In this paper, the effect of salt content on the connection between the ultrasonic pulse velocity and the concrete compressive strength has also been studied.


2017 ◽  
Vol 902 ◽  
pp. 9-13
Author(s):  
Rosalía Ruiz Ruiz ◽  
Elia Mercedes Alonso Guzmán ◽  
Wilfrido Martínez Molina ◽  
Hugo Luis Chávez García ◽  
Judith Alejandra Velázquez Perez

Cement industry is responsible of 5-7% of CO2 emissions to the atmosphere. This is preoccupant because this is one of the greenhouse effect gases which cause global warming. Pozzolanic material incorporation in cement mortars elaboration represents a good alternative to partially substitute cement, since its chemical composition could contribute to improvement of its durability and mechanical characteristics. In this research, mortars with pozzolanic substitutions are evaluated through non-destructive tests as: capillary absorption, electrical resistivity, and ultrasonic pulse velocity to the age of 1000 days. The results suggested that the incorporation of pozzolanic material as partial substitutes of Portland cement increases the mortars properties mainly in substitutions of CBC 20%, PN 10, and 30%.


2018 ◽  
Vol 207 ◽  
pp. 01001
Author(s):  
Tu Quynh Loan Ngo ◽  
Yu-Ren Wang

In the construction industry, to evaluate the compressive strength of concrete, destructive and non-destructive testing methods are used. Non-destructive testing methods are preferable due to the fact that those methods do not destroy concrete samples. However, they usually give larger percentage of error than using destructive tests. Among the non-destructive testing methods, the ultrasonic pulse velocity test is the popular one because it is economic and very simple in operation. Using the ultrasonic pulse velocity test gives 20% MAPE more than using destructive tests. This paper aims to improve the ultrasonic pulse velocity test results in estimating the compressive strength of concrete using the help of artificial intelligent. To establish a better prediction model for the ultrasonic pulse velocity test, data collected from 312 cylinder of concrete samples are used to develop and validate the model. The research results provide valuable information when using the ultrasonic pulse velocity tests to the inputs data in addition with support vector machine by learning algorithms, and the actual compressive strengths are set as the target output data to train the model. The results show that both MAPEs for the linear and nonlinear regression models are 11.17% and 17.66% respectively. The MAPE for the support vector machine models is 11.02%. These research results can provide valuable information when using the ultrasonic pulse velocity test to estimate the compressive strength of concrete.


Sign in / Sign up

Export Citation Format

Share Document