Static analysis of thin-walled structures using polynomial and exact solutions. Application to thin-walled pipes

1991 ◽  
Vol 12 (2) ◽  
pp. 89-112 ◽  
Author(s):  
A.E. Kanarachos ◽  
N. Koutsidis ◽  
C.N. Spentzas
2004 ◽  
Vol 10 (2) ◽  
pp. 113-122
Author(s):  
Ireneusz Kreja ◽  
Tomasz Mikulski ◽  
Czeslaw Szymczak

A concept of a beam superelement is suggested as a new tool in the static analysis of structures made of thin‐walled members. This proposal seems to be especially attractive for treating the problems where the existing one‐dimensional models do not provide proper solutions. This class of problems includes, for instance, the torsion of thin‐walled beams with battens and the determination of the bimoment distribution at the nodes of frames made of thin‐walled members. The entire segment of the thin‐walled beam with warping stiffener or the whole node of the frame is modelled with shell elements. The stiffness matrix of such thin‐walled beam superelement can be estimated according to the standard procedure of the enforced unit displacements. The accuracy of the proposed one‐dimensional model has proved to be comparable to that offered by the detailed FEM model where the whole structure is represented by a very large number of shell elements.


2004 ◽  
Vol 10 (2) ◽  
pp. 113-122 ◽  
Author(s):  
Ireneusz Kreja ◽  
Tomasz Mikulski ◽  
Czeslaw Szymczak

2018 ◽  
Vol 762 (8) ◽  
pp. 36-39 ◽  
Author(s):  
B.G. BULATOV ◽  
◽  
R.I. SHIGAPOV ◽  
M.A. IVLEV ◽  
I.V. NEDOSEKO ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 592
Author(s):  
Feng Yue ◽  
Ziyan Wu

The fracture mechanical behaviour of thin-walled structures with cracks is highly significant for structural strength design, safety and reliability analysis, and defect evaluation. In this study, the effects of various factors on the fracture parameters, crack initiation angles and plastic zones of thin-walled cylindrical shells with cracks are investigated. First, based on the J-integral and displacement extrapolation methods, the stress intensity factors of thin-walled cylindrical shells with circumferential cracks and compound cracks are studied using linear elastic fracture mechanics, respectively. Second, based on the theory of maximum circumferential tensile stress of compound cracks, the number of singular elements at a crack tip is varied to determine the node of the element corresponding to the maximum circumferential tensile stress, and the initiation angle for a compound crack is predicted. Third, based on the J-integral theory, the size of the plastic zone and J-integral of a thin-walled cylindrical shell with a circumferential crack are analysed, using elastic-plastic fracture mechanics. The results show that the stress in front of a crack tip does not increase after reaching the yield strength and enters the stage of plastic development, and the predicted initiation angle of an oblique crack mainly depends on its original inclination angle. The conclusions have theoretical and engineering significance for the selection of the fracture criteria and determination of the failure modes of thin-walled structures with cracks.


Sign in / Sign up

Export Citation Format

Share Document