scholarly journals APPLICATION OF SUPERELEMENTS IN STATIC ANALYSIS OF THIN‐WALLED STRUCTURES

2004 ◽  
Vol 10 (2) ◽  
pp. 113-122
Author(s):  
Ireneusz Kreja ◽  
Tomasz Mikulski ◽  
Czeslaw Szymczak

A concept of a beam superelement is suggested as a new tool in the static analysis of structures made of thin‐walled members. This proposal seems to be especially attractive for treating the problems where the existing one‐dimensional models do not provide proper solutions. This class of problems includes, for instance, the torsion of thin‐walled beams with battens and the determination of the bimoment distribution at the nodes of frames made of thin‐walled members. The entire segment of the thin‐walled beam with warping stiffener or the whole node of the frame is modelled with shell elements. The stiffness matrix of such thin‐walled beam superelement can be estimated according to the standard procedure of the enforced unit displacements. The accuracy of the proposed one‐dimensional model has proved to be comparable to that offered by the detailed FEM model where the whole structure is represented by a very large number of shell elements.

Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2125 ◽  
Author(s):  
Paweł Dunaj ◽  
Stefan Berczyński ◽  
Karol Miądlicki ◽  
Izabela Irska ◽  
Beata Niesterowicz

The paper presents a new way to conduct passive elimination of vibrations consisting of covering elements of structures with low dynamic stiffness with polylactide (PLA). The PLA cover was created in 3D printing technology. The PLA cover was connected with the structure by means of a press connection. Appropriate arrangement of the PLA cover allows us to significantly increase the dissipation properties of the structure. The paper presents parametric analyses of the influence of the thickness of the cover and its distribution on the increase of the dissipation properties of the structure. Both analyses were carried out using finite element models (FEM). The effectiveness of the proposed method of increasing damping and the accuracy of the developed FEM models was verified by experimental studies. As a result, it has been proven that the developed FEM model of a free-free steel beam covered with polylactide enables the mapping of resonance frequencies at a level not exceeding 0.6% of relative error. Therefore, on its basis, it is possible to determine the parameters of the PLA cover. Comparing a free-free steel beam without cover with its PLA-covered counterpart, a reduction in the amplitude levels of the receptance function was achieved by up to 90%. The solution was validated for a steel frame for which a 37% decrease in the amplitude of the receptance function was obtained.


Author(s):  
R. C. Dragt ◽  
J. Kraus ◽  
C. L. Walters

Simulation of failure in thin-walled structures is critical for the correct determination of crash performance of ships and offshore structures. Typically, shell elements are used, but these elements are not able to adequately capture local failure, especially inside of a neck. This paper addresses these gaps by adapting the Bridgman (1952) model of a neck inside of a plate by making it three-dimensional and offering an estimate of the relationship between state parameters of a shell element and the geometry inside of a neck. Finally, recommendations are also made about how to interface this information with the Modified Mohr-Coulomb failure locus to create a practical algorithm for assessing failure in shell elements.


10.14311/750 ◽  
2005 ◽  
Vol 45 (4) ◽  
Author(s):  
V. Zanic ◽  
P. Prebeg

A concept design methodology for monotonous, tapered thin-walled structures (wing/fuselage/ship/bridge) is presented including modules for: model generation; loads; primary (longitudinal) and secondary (transverse) strength calculations; structural feasibility (buckling/fatigue/ultimate strength criteria); design optimization modules based on ES/GA/FFE; graphics. A method for primary strength calculation is presented in detail. It provides the dominant response field for design feasibility assessment. Bending and torsion of the structure are modelled with the accuracy required for concept design. A ‘2.5D-FEM’ model is developed by coupling a 1D-FEM model along the ‘monotonity’ axis and a 2D-FEM model(s) transverse to it. The shear flow and stiffness characteristics of the cross-section for bending and pure/restrained torsion are given, based upon the warping field of the cross-section. Examples: aircraft wing and ship hull. 


2020 ◽  
Vol 19 (1) ◽  
pp. 42
Author(s):  
G. C. Oliveira ◽  
S. S. Ribeiroa ◽  
G. Guimarães

The inverse problem in conducting heat is related to the determination of the boundary condition, rate of heat generation, or thermophysical properties, using temperature measurements at one or more positions of the solid. The inverse problem in conducting heat is mathematically one of the ill-posed problems, because its solution extremely sensitive to measurement errors. For a well-placed problem the following conditions must be satisfied: the solution must exist, it must be unique and must be stable on small changes of the input data. The objective of the work is to estimate the heat flux generated at the tool-chip-chip interface in a manufacturing process. The term "estimation" is used because in the temperature measurements, errors are always present and these affect the accuracy of the calculation of the heat flow.


2005 ◽  
Vol 11 (1) ◽  
pp. 57-64 ◽  
Author(s):  
Ireneusz Kreja ◽  
Tomasz Mikulski ◽  
Czeslaw Szymczak

Sensitivity analysis of beams and frames assembled of thin‐walled members is presented within the adjoint approach. Static loads and structures composed of thin‐walled members with the bisymmetrical open cross‐section are considered. The analysed structure is represented by the one‐dimensional model consisting of thin‐walled beam elements based on the classical assumptions of the theory of thin‐walled beams of non‐deformable cross‐section together with superelements applied in place of location of structure nodes, restraints and stiffeners. The results of sensitivity analysis, obtained for the structure model described above, are compared with the results of the detailed FEM model, where the whole structure is discretised with the use of QUAD4 shell elements of the system MSC/NASTRAN.


Sign in / Sign up

Export Citation Format

Share Document