An instrument for rapidly measuring plasma distribution functions with high resolution

1982 ◽  
Vol 2 (7) ◽  
pp. 67-70 ◽  
Author(s):  
C.W. Carlson ◽  
D.W. Curtis ◽  
G. Paschmann ◽  
W. Michel
Author(s):  
W. Chiu ◽  
M.F. Schmid ◽  
T.-W. Jeng

Cryo-electron microscopy has been developed to the point where one can image thin protein crystals to 3.5 Å resolution. In our study of the crotoxin complex crystal, we can confirm this structural resolution from optical diffractograms of the low dose images. To retrieve high resolution phases from images, we have to include as many unit cells as possible in order to detect the weak signals in the Fourier transforms of the image. Hayward and Stroud proposed to superimpose multiple image areas by combining phase probability distribution functions for each reflection. The reliability of their phase determination was evaluated in terms of a crystallographic “figure of merit”. Grant and co-workers used a different procedure to enhance the signals from multiple image areas by vector summation of the complex structure factors in reciprocal space.


2017 ◽  
Vol 12 (S333) ◽  
pp. 30-33
Author(s):  
Evan Eames ◽  
Benoît Semelin

AbstractWith current efforts inching closer to detecting the 21-cm signal from the Epoch of Reionization (EoR), proper preparation will require publicly available simulated models of the various forms the signal could take. In this work we present a database of such models, available at 21ssd.obspm.fr. The models are created with a fully-coupled radiative hydrodynamic simulation (LICORICE), and are created at high resolution (10243). We also begin to analyse and explore the possible 21-cm EoR signals (with Power Spectra and Pixel Distribution Functions), and study the effects of thermal noise on our ability to recover the signal out to high redshifts. Finally, we begin to explore the concepts of ‘distance’ between different models, which represents a crucial step towards optimising parameter space sampling, training neural networks, and finally extracting parameter values from observations.


2015 ◽  
Vol 30 (S1) ◽  
pp. S65-S69 ◽  
Author(s):  
Giorgia Confalonieri ◽  
Monica Dapiaggi ◽  
Marco Sommariva ◽  
Milen Gateshki ◽  
Andy N. Fitch ◽  
...  

Total scattering data of nanocrystalline gahnite (ZnAl2O4, 2–3 nm) have been collected with three of the most commonly used instruments: (i) ID31 high-resolution diffractometer at the European Synchrotron Radiation Facility (ESRF) (Qmax = 22 Å−1); (ii) ID11 high-energy beamline at the ESRF (Qmax = 26.6 Å−1); and (iii) Empyrean laboratory diffractometer by PANalytical with molybdenum anode X-ray tube (Qmax = 17.1 Å−1). Pair distribution functions (PDFs) for each instrument data-set have been obtained, changing some of the parameters, by PDFgetX3 software, with the aim of testing the software in the treatment of different total scattering data. The material under analysis has been chosen for its nanometric (and possibly disordered) nature, to give rise to a challenge for all the diffractometers involved. None of the latter should have a clear advantage. The PDF and F(Q) functions have been visually compared, and then the three PDF sets have been used for refinements by means of PDFgui suite. All the refinements have been made exactly in the same way for the sake of a fair comparison. Small differences could be observed in the experimental PDFs and the derived results, but none of them seemed to be significant.


2007 ◽  
Vol 592 ◽  
pp. 335-366 ◽  
Author(s):  
T. ISHIHARA ◽  
Y. KANEDA ◽  
M. YOKOKAWA ◽  
K. ITAKURA ◽  
A. UNO

One-point statistics of velocity gradients and Eulerian and Lagrangian accelerations are studied by analysing the data from high-resolution direct numerical simulations (DNS) of turbulence in a periodic box, with up to 40963 grid points. The DNS consist of two series of runs; one is with kmaxη ~ 1 (Series 1) and the other is with kmaxη ~ 2 (Series 2), where kmax is the maximum wavenumber and η the Kolmogorov length scale. The maximum Taylor-microscale Reynolds number Rλ in Series 1 is about 1130, and it is about 675 in Series 2. Particular attention is paid to the possible Reynolds number (Re) dependence of the statistics. The visualization of the intense vorticity regions shows that the turbulence field at high Re consists of clusters of small intense vorticity regions, and their structure is to be distinguished from those of small eddies. The possible dependence on Re of the probability distribution functions of velocity gradients is analysed through the dependence on Rλ of the skewness and flatness factors (S and F). The DNS data suggest that the Rλ dependence of S and F of the longitudinal velocity gradients fit well with a simple power law: S ~ −0.32Rλ0.11 and F ~ 1.14Rλ0.34, in fairly good agreement with previous experimental data. They also suggest that all the fourth-order moments of velocity gradients scale with Rλ similarly to each other at Rλ > 100, in contrast to Rλ < 100. Regarding the statistics of time derivatives, the second-order time derivatives of turbulent velocities are more intermittent than the first-order ones for both the Eulerian and Lagrangian velocities, and the Lagrangian time derivatives of turbulent velocities are more intermittent than the Eulerian time derivatives, as would be expected. The flatness factor of the Lagrangian acceleration is as large as 90 at Rλ ≈ 430. The flatness factors of the Eulerian and Lagrangian accelerations increase with Rλ approximately proportional to RλαE and RλαL, respectively, where αE ≈ 0.5 and αL ≈ 1.0, while those of the second-order time derivatives of the Eulerian and Lagrangian velocities increases approximately proportional to RλβE and RλβL, respectively, where βE ≈ 1.5 and βL ≈ 3.0.


2020 ◽  
Vol 497 (2) ◽  
pp. 1738-1756 ◽  
Author(s):  
K Scherer ◽  
E Husidic ◽  
M Lazar ◽  
H Fichtner

ABSTRACT In the literature different so-called κ-distribution functions are discussed to fit and model the velocity (or energy) distributions of solar wind species, pickup ions, or magnetospheric particles. Here, we introduce a generalized (isotropic) κ-distribution as a ‘cookbook’, which admits as special cases, or ‘recipes’, all the other known versions of κ-models. A detailed analysis of the generalized distribution function is performed, providing general analytical expressions for the velocity moments, Debye length, and entropy, and pointing out a series of general requirements that plasma distribution functions should satisfy. From a contrasting analysis of the recipes found in the literature, we show that all of them lead to almost the same macroscopic parameters with a small standard deviation between them. However, one of these recipes called the regularized κ-distribution provides a functional alternative for macroscopic parametrization without any constraint for the power-law exponent κ.


2019 ◽  
Vol 491 (3) ◽  
pp. 3967-3973
Author(s):  
H-J Fahr ◽  
M Heyl

ABSTRACT In typical plasma physics scenarios, when treated on kinetic levels, distribution functions with suprathermal wings are obtained. This raises the question of how the associated typical velocity moments, which are needed to arrive at magnetohydrodynamic plasma descriptions, may appear. It has become evident that the higher velocity moments in particular, for example the pressure or heat transport, which are constructed as integrations of the distribution function, contain unphysical contributions from particles with velocities greater than the velocity of light. In what follows, we discuss two possibilities to overcome this problem. One is to calculate a maximal, physically permitted, upper velocity, which can be realized in view of the underlying energization processes, and to stop the integration there. The other is to modify the distribution function relativistically so that no particles with superluminal (v ≥ c) velocities appear. On the basis of a typical collision-free plasma scenario, like the plasma in the heliosheath, we obtain the corresponding expressions for electron and proton pressures and can show that in both cases the pressures are reduced compared with their classical values; however, electrons experience a stronger reduction than protons. When calculating pressure ratios, it turns out that these are of the same order of magnitude regardless of which of the two methods is used. The electron, as the low-mass particle, undergoes the more pronounced pressure reduction. It may turn out that electrons and protons constitute about equal pressures in the heliosheath, implying that no pressure deficit need be claimed here.


2020 ◽  
Vol 86 (5) ◽  
Author(s):  
Haoming Liang ◽  
M. Hasan Barbhuiya ◽  
P. A. Cassak ◽  
O. Pezzi ◽  
S. Servidio ◽  
...  

We investigate kinetic entropy-based measures of the non-Maxwellianity of distribution functions in plasmas, i.e. entropy-based measures of the departure of a local distribution function from an associated Maxwellian distribution function with the same density, bulk flow and temperature as the local distribution. First, we consider a form previously employed by Kaufmann & Paterson (J. Geophys. Res., vol. 114, 2009, A00D04), assessing its properties and deriving equivalent forms. To provide a quantitative understanding of it, we derive analytical expressions for three common non-Maxwellian plasma distribution functions. We show that there are undesirable features of this non-Maxwellianity measure including that it can diverge in various physical limits and elucidate the reason for the divergence. We then introduce a new kinetic entropy-based non-Maxwellianity measure based on the velocity-space kinetic entropy density, which has a meaningful physical interpretation and does not diverge. We use collisionless particle-in-cell simulations of two-dimensional anti-parallel magnetic reconnection to assess the kinetic entropy-based non-Maxwellianity measures. We show that regions of non-zero non-Maxwellianity are linked to kinetic processes occurring during magnetic reconnection. We also show the simulated non-Maxwellianity agrees reasonably well with predictions for distributions resembling those calculated analytically. These results can be important for applications, as non-Maxwellianity can be used to identify regions of kinetic-scale physics or increased dissipation in plasmas.


1994 ◽  
Vol 21 (11) ◽  
pp. 1027-1030 ◽  
Author(s):  
S. Machida ◽  
T. Mukai ◽  
Y. Saito ◽  
M. Hirahara ◽  
T. Obara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document