In vivo and in vitro production of haemopoietic colony-stimulating activity by murine cell lines of different origin: a frequent finding

1989 ◽  
Vol 25 (9) ◽  
pp. 1281-1286 ◽  
Author(s):  
Giordano Nicoletti ◽  
Carla de Giovanni ◽  
Pier-Luigi Lollini ◽  
Gian Paolo Bagnara ◽  
Katia Scotlandi ◽  
...  
1987 ◽  
Vol 5 (1) ◽  
pp. 35-43 ◽  
Author(s):  
Douglas E. Williams ◽  
David S. Chervinsky ◽  
Frank R. Orsini ◽  
Cameron K. Tebbi ◽  
John E. Fitzpatrick

2010 ◽  
Vol 22 (1) ◽  
pp. 285
Author(s):  
S. Wohlres-Viana ◽  
M. M. Pereira ◽  
A. P. Oliveira ◽  
J. H. M. Viana ◽  
M. A. Machado ◽  
...  

The Zebu breeds (Bos indicus) are different from European breeds (Bos taurus) in some aspects of their reproductive physiology, including follicle recruitment, number of follicular waves, and oocyte ultrastructure. On the other hand, embryos produced in vivo and in vitro show morphological and developmental differences, which can be related to culture environment. The aim of this study was to evaluate the effect of breed (Gyr v. Holstein) within embryo production system (in vivo and in vitro), as well as effect of production systems within breeds on relative abundance of transcripts related to formation, survival, and subsequent development of blastocysts, such as those involved in water and small solutes transport (Aquaporins 3 and 11), blastocoel formation (Na+/K+-ATPase a1 and |52), and cellular stress response (Peroxiredoxin 1). For in vivo embryo production, donors were superstimulated with FSH and inseminated, and embryos were recovered 7 days after AI. For in vitro embryo production, oocytes recovered by ovum pickup were in vitro matured and fertilized and then cultured for 7 days in culture medium under 5% CO2 at 38.5°C. For each group, blastocysts (n = 15) distributed in 3 pools were used for RNA extraction (RNeasy MicroKit, Qiagen, Valencia, CA, USA), followed by RNA amplification (Messageamp II amplification kit, Ambion-Applied Biosystems, Foster City, CA, USA) and reverse transcription (SuperScript III First-Stand Synthesis Supermix, Invitrogen, Carlsbad, CA, USA). The cDNA were submitted to real-time PCR, using the H2a gene as endogenous control, and analyzed by REST© software. To evaluate breed effect within the production systems, 2 comparisons were performed: (1) in vivo: Gyr v. Holstein and (2) in vitro: Gyr v. Holstein, considering Holstein data as 1.00. To evaluate production system effect within breeds, 2 comparisons were performed: (1) Gyr: in vivo v. in vitro and (2) Holstein: in vivo v. in vitro, considering in vivo produced embryo data as 1.00. The results are shown as mean ± SEM. For in vivo comparison between breeds, Aquaporin 3 (1.66 ± 0.77), Na+/K+-ATPase a1 (1.61 ± 0.56), and Peroxiredoxin 1 (1.61 ± 0.66) were up-regulated (P < 0.05) in Gyr embryos when compared with Holstein embryos, whereas for in vitro comparison, no differences (P > 0.05) were found. For comparisons between production systems within breeds, only Peroxiredoxin 1 (0.31 ± 0.39) was down-regulated (P < 0.01) in in vitro produced Gyr embryos when compared with in vivo counterparts. No differences (P > 0.05) were found between production systems for the Holstein breed. In conclusion, these data suggest that there is a difference on gene expression between Bos taurus and Bos indicus blastocysts, but such difference between breeds can be attenuated by the in vitro production system, indicating an embryo adaptation to the in vitro culture conditions. The data also suggest that the in vitro production system can influence the amount of transcripts in Gyr embryos. Other genes should be evaluated for a better understanding of these differences. Financial support was provided by CNPq and FAPEMIG.


2011 ◽  
Vol 2 (1) ◽  
Author(s):  
Takuya Sato ◽  
Kumiko Katagiri ◽  
Tetsuhiro Yokonishi ◽  
Yoshinobu Kubota ◽  
Kimiko Inoue ◽  
...  

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2315-2315
Author(s):  
Tyler A Couch ◽  
Zachary C. Murphy ◽  
Michael Getman ◽  
Ryo Kurita ◽  
Yukio Nakamura ◽  
...  

Abstract There is a constant need for red blood cells for transfusion therapy in the treatment of anemias and acute injury. As all blood products for transfusion come from donors, there are concerns over shortages and safety. Furthermore, many patients with transfusion-dependent anemias risk alloiumminization. The in vitro production of red blood cells would address these problems, especially as they can be genetically engineered to prevent alloimmunization. Numerous erythroid culture systems now exist for the in vitro production of red blood cells. Hematopoietic stem and progenitor cells (HSPCs) obtained from umbilical cord or peripheral blood can be differentiated into erythrocytes, however, they are limited in expansion. While umbilical cord HSPCs have greater expandability than peripheral blood, the resulting erythrocytes contain fetal globins. Pluripotent stem cells can also be used as a starting source, however only a small percentage of the cells can be differentiated into erythroblasts which also suffer from low enucleation rates. Presently, the cost of in vitro production of a unit of red cells is greater than an order of magnitude higher than obtaining it from a donor largely due to the medium and cytokine costs (Timmins & Nielsen, Trends Biotechnol, 2009). A relatively new approach of immortalizing early erythroblasts allowing unlimited expansion as well as terminal maturation and enucleation shows great therapeutic promise (Kurita et al., PLoS One, 2013; Huang et al., Mol Ther, 2014; Trakarnsanga et al., Nat Commun, 2017). However, these immortalized erythroblasts are still reliant on two costly cytokines: stem cell factor (SCF) and erythropoietin (Epo). Mutations in exon 17 of the receptor tyrosine kinase gene KIT are frequently seen in acute myeloid leukemias, gastrointestinal stromal tumors, and mast cells leading to mastocytosis. These mutations cause the c-Kit protein to spontaneously activate and transduce signal in the absence of SCF (Kit-ligand). To generate an SCF-independent HUDEP-2 cell line (Kurita et al., PLoS One, 2013), we used CRISPR/Cas9 to introduce missense and frameshifting mutations within the vicinity of Asp816 in exon 17 of the KIT gene. The resulting monoclonal cell lines were selected for by removing SCF from the expansion medium and were subsequently named KIT-CAT (KIT with Constitutively Activating Transformation). To better understand what KIT mutations allowed or impaired terminal maturation, monoclonal cell lines were genotyped by Sanger sequencing. Three cell lines with unique genotypes were chosen for further analysis. All three KIT-CAT lines had a shorter doubling time compared to HUDEP-2 cells (16.7 vs 18.9 hrs, p=0.020) and were no longer dependent on SCF or Epo. However, two of the three KIT-CAT lines showed more robust proliferation with Epo in the expansion medium. The addition of SCF to the medium caused no increase in c-Kit activation by Western blotting for phosphorylation at Tyr703. Furthermore, the low molecular weight and immature form of c-Kit is also phosphorylated in KIT-CAT cells, but not HUDEP-2 cells, indicating c-Kit activation occurs before trafficking to the cell membrane where SCF would bind (Tabone-Eglinger et al., Clin Cancer Res, 2008). Key features of erythroblast maturation are the decrease in cell and nuclear size which can be measured using imaging flow cytometry (McGrath et al., Methods, 2017). While in expansion phase, all 3 cell lines were larger in cell and nuclear area compared to the parental HUDEP-2 line. By day 6 of maturation, all three cell lines had statistically significant decreases in cell and nuclear size indicating maturation. By day 13 of culture, Wright-Giemsa staining showed that the majority of the cells were orthochromatic erythroblasts or enucleate reticulocytes. Reducing cell culture costs is needed for in vitro manufacturing of red blood cells to be economically feasible. These results show that a c-Kit activating mutations in human erythroblasts removes the cost of SCF and reduces the cost of Epo while still allowing for terminal maturation and enucleation. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document