bioactive peptide
Recently Published Documents


TOTAL DOCUMENTS

327
(FIVE YEARS 98)

H-INDEX

36
(FIVE YEARS 6)

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262183
Author(s):  
Hong Ki Min ◽  
JeongWon Choi ◽  
Seon-Yeong Lee ◽  
A. Ram Lee ◽  
Byung-Moo Min ◽  
...  

Purpose Spondyloarthritis (SpA) is a systemic inflammatory arthritis mediated mainly by interleukin (IL)-17. The vitronectin-derived bioactive peptide, VnP-16, exerts an anti-osteoporotic effect via β1 and αvβ3 integrin signaling. SpA is associated with an increased risk of osteoporosis, and we investigated the effect of VnP-16 in mice with SpA. Methods SpA was induced by curdlan in SKG ZAP-70W163C mice, which were treated with vehicle, celecoxib, VnP-16, or VnP-16+celecoxib. The clinical score, arthritis score, spondylitis score, and proinflammatory cytokine expression of the spine were evaluated by immunohistochemical staining. Type 17 helper T cell (Th17) and regulatory T cell (Treg) differentiation in the spleen was evaluated by flow cytometry and in the spine by confocal staining. Splenocyte expression of signal transducer and activator of transcription (STAT) 3 and pSTAT3 was evaluated by in vitro Western blotting. Results The clinical score was significantly reduced in the VnP16+celecoxib group. The arthritis and spondylitis scores were significantly lower in the VnP-16 and VnP16+celecoxib groups than the vehicle group. In the spine, the levels of IL-1β, IL-6, tumor necrosis factor-α, and IL-17 expression were reduced and Th17/Treg imbalance was regulated in the VnP-16 alone and VnP-16+celecoxib groups. Flow cytometry of splenocytes showed increased polarization of Tregs in the VnP-16+celecoxib group. In vitro, VnP-16 suppressed pSTAT3. Conclusions VnP-16 plus celecoxib prevented SpA progression in a mouse model by regulating the Th17/Treg imbalance and suppressing the expression of proinflammatory cytokines.


2022 ◽  
pp. 47-72
Author(s):  
Anja Dullius ◽  
Gabriela Rabaioli Rama ◽  
Maiara Giroldi ◽  
Márcia Inês Goettert ◽  
Daniel Neutzling Lehn ◽  
...  

2022 ◽  
Author(s):  
Rong He ◽  
Mengting Liu ◽  
Zhipeng Zou ◽  
Mingjie Wang ◽  
Zhigao Wang ◽  
...  

Various food-derived bioactive peptides have been found with potential anti-inflammatory effects. Millet bran peptide is a food-derived bioactive peptide extracted from millet bran, a by-product of millet processing. In this...


Toxicon ◽  
2022 ◽  
Author(s):  
Carlos Alberto-Silva ◽  
Samyr Machado Querobino ◽  
Cesar Augusto Melo-Silva ◽  
Maricilia Silva Costa ◽  
Luis Vicente Franco Oliveira ◽  
...  

2021 ◽  
Vol 17 (2) ◽  
pp. 160-171
Author(s):  
Taufik Muhammad Fakih ◽  
Mentari Luthfika Dewi

Background: Human immunodeficiency virus/acquired immunodeficiency syndrome (HIV or AIDS) is a disease related to the human immune system. Given its important role in viral replication, HIV1 protease (HIV1 PR) becomes the major therapeutic target in the treatment of AIDS. In this case, we need a dynamic aspect of molecular interactions that can demonstrate the important role of conformational variability in the design of HIV1 PR inhibitors. There are several inhibitor candidates from marine organisms, such as the LLEYSL and LLEYSI bioactive peptides produced by oysters (Crassostrea gigas). Objective: Proteinpeptide docking method was used in silico to identify, evaluate, and explore the molecular interactions between bioactive peptide molecules and HIV-1 protease macromolecules. Methods: The sequencing of bioactive peptide molecules was modeled into 3D conformation using the PEPFOLD software. The best conformation was chosen for the study of molecular interactions against HIV1 protease macromolecules using the PatchDock software. The molecular interactions formed were further observed using the BIOVIA Discovery Studio 2020 software. Results: The results of this study indicated that the LLEYSL bioactive peptide had the best affinity with an ACE score of minus 1284.70 kJ per mol. Conclusion: Bioactive peptide molecule is predicted to be a candidate for HIV1 protease inhibitor. Keywords: AIDS, HIV1 protease, bioactive peptides, protein-peptide docking, in silico


2021 ◽  
Vol 888 (1) ◽  
pp. 012058
Author(s):  
Edy Susanto ◽  
Anik Fadlilah ◽  
Muhammad Fathul Amin

Abstract The consumption of meat should consider the concept of functional food. The meat had a highquality protein and contain of bioactive peptide compounds. Amino acid was component of bioactive peptides compound. It joined by covalent bonds known as amide or peptide bonds. A lot of research was currently focused on the bioactive peptide compounds isolated from myofibril and sarcoplasmic proteins with the synthesis, extraction, and identification methods. This study used a systematic review to get the structure of amino acids that the source of bioactive components and the principle of synthesis, extraction and identification of bioactive peptide in the meat. This paper highlights were finding on the structure of amino acid in the meat. The proportion of amino acids was also different in each animal body location. The result identified that more than 170 peptides were released from the main structure of the myofibril (actin, myosin) and sarcoplasmic muscle proteins, and the synthesis, extraction and bioactive peptide identification in the meat as well as their potential use as functional food.


2021 ◽  
pp. 101419
Author(s):  
Xiaohui Luo ◽  
Shaozhen Wu ◽  
Jiawen Xue ◽  
Hao Hu ◽  
Zhiping He ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5726
Author(s):  
Yarelys Elena Augusto-Jimenez ◽  
Marcela González-Montoya ◽  
Dany Naranjo-Feliciano ◽  
Daniel Uribe-Ramírez ◽  
Eliseo Cristiani-Urbina ◽  
...  

The conjugation of biomolecules to magnetic nanoparticles has emerged as promising approach in biomedicine as the treatment of several diseases, such as cancer. In this study, conjugation of bioactive peptide fractions from germinated soybeans to magnetite nanoparticles was achieved. Different fractions of germinated soybean peptides (>10 kDa and 5–10 kDa) were for the first time conjugated to previously coated magnetite nanoparticles (with 3-aminopropyltriethoxysilane (APTES) and sodium citrate) by the Ugi four-component reaction. The crystallinity of the nanoparticles was corroborated by X-ray diffraction, while the particle size was determined by scanning transmission electron microscopy. The analyses were carried out using infrared and ultraviolet–visible spectroscopy, dynamic light scattering, and thermogravimetry, which confirmed the coating and functionalization of the magnetite nanoparticles and conjugation of different peptide fractions on their surfaces. The antioxidant activity of the conjugates was determined by the reducing power and hydroxyl radical scavenging activity. The nanoparticles synthesized represent promising materials, as they have found applications in bionanotechnology for enhanced treatment of diseases, such as cancer, due to a higher antioxidant capacity than that of fractions without conjugation. The highest antioxidant capacity was observed for a >10 kDa peptide fraction conjugated to the magnetite nanoparticles coated with APTES.


2021 ◽  
Vol 21 (12) ◽  
pp. 615-625
Author(s):  
Ayse Kose

Seaweeds are one of the ancient food supplements on Earth. Especially Asian countries use seaweeds as the fundamental ingredient in their cuisine. Seaweeds are photosynthetic organisms living in aquatic ecosystems and in the coastal territories. Seaweeds out of farm areas are frequently observed as coastal wastes. However, seaweeds are outstanding sources for bioactive substances and investigation bioactive properties of seaweed RuBisCO has never been done. RuBisCO is the most abundant protein on Earth but a vast amount of RuBisCO goes through waste. In this study, bioactive peptide prediction of frequently consumed seaweed RuBisCO proteins were analyzed in silico to identify possible bioactive peptides as substitute or support for grain, meat, and dairy based bioactive peptides. A huge portion of peptides were di-, tri- peptides with IC50 values less than 300 µM according to the comparison of BIOPEP database. Including gastric digestion, more than half of the peptides showed DDP-IV and ACE inhibitory activity followed by antioxidant properties. Also, novel antiinflammatory and anti-cancer peptides were found through in silico analysis.


Sign in / Sign up

Export Citation Format

Share Document