Body temperature, oxygen consumption, evaporative water loss and heart rate in the fennec

1979 ◽  
Vol 62 (3) ◽  
pp. 585-592 ◽  
Author(s):  
Ursel Noll-Banholzer
The Condor ◽  
1962 ◽  
Vol 64 (2) ◽  
pp. 117-125 ◽  
Author(s):  
George A. Bartholomew ◽  
Jack W. Hudson ◽  
Thomas R. Howell

1986 ◽  
Vol 34 (1) ◽  
pp. 25 ◽  
Author(s):  
JR Roberts ◽  
RV Baudinette

Stubble quail occur in more arid areas of Australia than king quail; however, the rates of metabolism and the ability to regulate body temperature in response to varying ambient temperature are similar in both birds, and resemble those of other quail species. At high ambient temperatures, rates of heat loss mediated by evaporative water loss are lower than those previously reported for more xerophilic species. Overall rates of water turnover and evaporative water loss at lower ambient temperatures are at the lower end of the range predicted for birds.


1979 ◽  
Vol 27 (2) ◽  
pp. 195 ◽  
Author(s):  
PC Withers ◽  
AK Lee ◽  
RW Martin

Resting oxygen consumption and total evaporative water loss were determined for N. alexis at ambient temperatures of 20, 28 and 33 deg C in dry air. The minimum rate of oxygen consumption was 0.61 ml min-1 at 33 deg C, and minimum total evaporative water loss was 4.75% body mass day-1 at 28 deg C. Respiration frequency, tidal volume and respiratory minute volume were determined for N. alexis at ambient temperatures of 20, 28 and 33 deg C in air of low or high relative humidity. Minimum values were obtained at 28 deg C and low RH for respiratory minute volume and tidal volume, and at 28 deg C and high RH for respiratory frequency. Expired air temperature of N. alexis at these temperatures was lower than or similar to ambient for mice in air of low RH, but was higher than or similar to ambient at high RH. Respiratory evaporative water loss, calculated from the previous data, was greatest for mice in dry air at 33 deg C, and least in moist air at 33 deg C. Cutaneous evaporative water loss made up about 40-60% of the total evaporative water loss for mice in dry air. The rates of total evaporative water loss were clearly reflected in the manner of body temperature regulation at high ambient temperatures. Hopping-mice in moist air at 28 and 33 deg C became hyperthermic, whereas mice in dry air showed only slight increases in body temperature. The significance of these data to hopping-mice in the field was discussed.


Sign in / Sign up

Export Citation Format

Share Document