Oxygen consumption and temperature acclimation in the northern prairie swift Sceloporus undulatus garmani from Kansas

1982 ◽  
Vol 71 (4) ◽  
pp. 611-613 ◽  
Author(s):  
J.L Hughes ◽  
L.C Fitzpatrick ◽  
G.W Ferguson ◽  
T.L Beitinger
1977 ◽  
Vol 69 (1) ◽  
pp. 1-12
Author(s):  
DENNIS J. MURPHY

1. A physiological mechanism responsible for increasing the freezing tolerance of the bivalve Modiolus demissus (Dillwyn) following low-temperature acclimation was demonstrated. 2. The rates of oxygen consumption of M. demissus acclimated to temperatures between 0 and 24 °C were presented as an Arrhenius plot. A change in slope occurred at 10 °C, suggesting that temperature alone was not responsible for the increased decline in the rate of oxygen consumption below 10 °C. 3. Low-temperature acclimation had no effect on blood Na+ or K+ concentrations but did reduce the concentration of blood Mg2+ and, in addition, resulted in the accumulation of end-products characteristic of anaerobic metabolism - tissue alanine and proline, and blood Ca2+. Furthermore, maintenance of M. demissus under anaerobic conditions increased freezing tolerance. 4. Taken together, these data indicate that the increased freezing tolerance of M. demissus acclimated to low temperatures involves a conversion to anaerobic metabolism. 5. The increase in blood Ca2+ following low-temperature acclimation was associated with the increased freezing tolerance. Finally, Mg2+ simulated the effect of Ca2+ on freezing tolerance, but was only 20% as effective. 6. These results suggest that a Ca2+-dependent mechanism responsible for increasing the freezing tolerance of M. demissus exists, and that the increase in blood Ca2+ is due to a conversion to anaerobic metabolism.


1993 ◽  
Vol 71 (11) ◽  
pp. 2167-2173 ◽  
Author(s):  
John R. Bailey ◽  
William R. Driedzic

Rainbow trout (Oncorhynchus mykiss) were acclimated to 5 and 20 °C. Oxygen consumption of isolated perfused hearts was measured at 5 or 15 °C with either glucose or palmitate as the exogenous fuel source. With glucose as the fuel there was no significant difference in oxygen consumption of hearts from either acclimation group at either temperature. With palmitate as the fuel source, hearts from fish acclimated to and tested at 5 °C had significantly higher oxygen consumption than hearts from fish acclimated to 20 °C and tested at either 5 or 15 °C. Hearts from fish both acclimated to and tested at 5 °C had a higher oxygen consumption with palmitate than when glucose was supplied. This reflects the preference for fatty acid fuels found in cold acclimated muscle tissue, and consequently the amount of oxygen required to utilize fats. Under all experimental conditions, 14CO2 production from either (6-14C)glucose or (1-14C)palmitate could account for less than 0.5% of oxygen consumption. Tissue chemical analysis showed that most of the label from (6-14C)glucose appeared in acid-soluble (glycolytic intermediates, citric acid cycle intermediates, amino acids, etc.) and lipid fractions while most of the label from (1-14C)palmitate appeared in lipid- or acid-soluble or acid precipitate (protein material) fractions. This indicates considerable dilution of exogenous fuels in endogenous pools, which could account for the discrepancy in measured O2 consumption and 14CO2 production. Glucose catabolism was little affected by either acute or chronic changes in temperature other than an increase in glucose incorporation into the glycogen pool. Hearts from fish both acclimated to and tested at 5 °C showed an increased handling of exogenous fatty acids as reflected by elevated rates of catabolism and incorporation into intracellular lipids.


Author(s):  
J. Widdows ◽  
B. L. Bayne

Mytilus edulis L. is shown to acclimate to high and low temperature under laboratory conditions. The warm and cold acclimation of oxygen consumption, filtration rate and assimilation efficiency are described for groups of animals maintained at three food-cell concentrations. Complete acclimation (Precht's type 2) of oxygen consumption and filtration rate occur within 14 days. There is no change in assimilation efficiency within the 28-day experimental period. The results are integrated and discussed in the context of a simple energy budget. In terms of the energy budget there exists a marked contrast between warm and cold acclimation. An “index of energy balance” is proposed in order to assess the state of the energy balance. When animals are fed above the maintenance requirement the energy budget remains in an equilibrium state during cold acclimation, whereas the acclimation to a warm temperature regime disrupts the balance and represents a physiological stress. During warm acclimation, prior to the re-establishment of an energy equilibrium the blood sugar level increases, suggesting that the animal is required to mobilize and utilize its energy reserves.


2021 ◽  
Vol 12 ◽  
Author(s):  
Erik Rollwitz ◽  
Martin Jastroch

Oxygen consumption allows measuring the metabolic activity of organisms. Here, we adopted the multi-well plate-based respirometry of the extracellular flux analyzer (Seahorse XF96) to investigate the effect of temperature on the bioenergetics of zebrafish embryos (Danio rerio) in situ. We show that the removal of the embryonic chorion is beneficial for oxygen consumption rates (OCR) and penetration of various mitochondrial inhibitors, and confirm that sedation reduces the variability of OCR. At 48h post-fertilization, embryos (maintained at a routine temperature of 28°C) were exposed to different medium temperatures ranging from 18°C to 37°C for 20h prior OCR measurement. Measurement temperatures from 18°C to 45°C in the XF96 were achieved by lowering the room temperature and active in-built heating. At 18°C assay temperature, basal OCR was low due to decreased ATP-linked respiration, which was not limited by mitochondrial power, as seen in substantial spare respiratory capacity. Basal OCR of the embryos increased with assay temperature and were stable up to 37°C assay temperature, with pre-exposure of 37°C resulting in more thermo-resistant basal OCR measured at 41°C. Adverse effects of the mitochondrial inhibitor oligomycin were seen at 37°C and chemical uncouplers disrupted substrate oxidation gradually with increasing assay temperature. Proton leak respiration increased at assay temperatures above 28°C and compromised the efficiency of ATP production, calculated as coupling efficiency. Thus, temperature impacts mitochondrial respiration by reduced cellular ATP turnover at lower temperatures and by increased proton leak at higher temperatures. This conclusion is coherent with the assessment of heart rate, an independent indicator of systemic metabolic rate, which increased with exposure temperature, peaking at 28°C, and decreased at higher temperatures. Collectively, plate-based respirometry allows assessing distinct parts of mitochondrial energy transduction in zebrafish embryos and investigating the effect of temperature and temperature acclimation on mitochondrial bioenergetics in situ.


Hydrobiologia ◽  
1969 ◽  
Vol 33 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Janet M. Daniels ◽  
Kenneth B. Armitage

Sign in / Sign up

Export Citation Format

Share Document