Ab initio pseudopotential study of europium monoxide EuO: 8Σ− Ground state and 8Σ− first excited state

1990 ◽  
Vol 148 (2-3) ◽  
pp. 219-227 ◽  
Author(s):  
Michael Dolg ◽  
Hermann Stoll ◽  
Heinzwerner Preuss
2001 ◽  
Vol 347 (1-3) ◽  
pp. 220-228 ◽  
Author(s):  
Martina Bittererová ◽  
Henric Östmark ◽  
Tore Brinck

2008 ◽  
Vol 3 (2) ◽  
pp. 114-118
Author(s):  
Andrei Tihonovschi

In present work we study two possible single-center units for binuclear iron complex Fe2(bpym)3Cl4 –[Fe(bpym)3]2+ and Fe(bpym)2Cl2. The obtained ground states for both studied systems are singlet states. In the case of Fe(bpym)2Cl2 the lowest excited states were calculated to be 240cm-1 (triplet) and 660cm-1 (quintet) above the ground state and so are placed according to Lande rule. These states could be populated at room temperatures. For [Fe(bpym)3]2+ first excited state was found to be about 6000cm-1 above the ground state and so cannot be populated at normal temperatures.


2017 ◽  
Vol 474 (16) ◽  
pp. 2713-2731 ◽  
Author(s):  
Athinoula L. Petrou ◽  
Athina Terzidaki

From kinetic data (k, T) we calculated the thermodynamic parameters for various processes (nucleation, elongation, fibrillization, etc.) of proteinaceous diseases that are related to the β-amyloid protein (Alzheimer's), to tau protein (Alzheimer's, Pick's), to α-synuclein (Parkinson's), prion, amylin (type II diabetes), and to α-crystallin (cataract). Our calculations led to ΔG≠ values that vary in the range 92.8–127 kJ mol−1 at 310 K. A value of ∼10–30 kJ mol−1 is the activation energy for the diffusion of reactants, depending on the reaction and the medium. The energy needed for the excitation of O2 from the ground to the first excited state (1Δg, singlet oxygen) is equal to 92 kJ mol−1. So, the ΔG≠ is equal to the energy needed for the excitation of ground state oxygen to the singlet oxygen (1Δg first excited) state. The similarity of the ΔG≠ values is an indication that a common mechanism in the above disorders may be taking place. We attribute this common mechanism to the (same) role of the oxidative stress and specifically of singlet oxygen, (1Δg), to the above-mentioned processes: excitation of ground state oxygen to the singlet oxygen, 1Δg, state (92 kJ mol−1), and reaction of the empty π* orbital with high electron density regions of biomolecules (∼10–30 kJ mol−1 for their diffusion). The ΔG≠ for cases of heat-induced cell killing (cancer) lie also in the above range at 310 K. The present paper is a review and meta-analysis of literature data referring to neurodegenerative and other disorders.


1964 ◽  
Vol 42 (6) ◽  
pp. 1311-1323 ◽  
Author(s):  
M. A. Eswaran ◽  
C. Broude

Lifetime measurements have been made by the Doppler-shift attenuation method for the 1.98-, 3.63-, 3.92-, and 4.45-Mev states in O18 and the 1.28-, 3.34-, and 4.47-Mev states in Ne22, excited by the reactions Li7(C12, pγ)O18 and Li7(O16, pγ)Ne22. Branching ratios have also been measured. The results are tabulated.[Formula: see text]The decay of the 3.92-Mev state in O18 is 93.5% to the 1.98-Mev state and 6.5% to the ground state and of the 4.45-Mev state 74% to the 3.63-Mev state, 26% to the 1.98-Mev state, and less than 2% to the ground state. In Ne22, the ground-state transition from the 4.47-Mev state is less than 2% of the decay to the first excited state.


Sign in / Sign up

Export Citation Format

Share Document