The inertial lift on a rigid sphere translating in a linear shear flow field

1994 ◽  
Vol 20 (2) ◽  
pp. 339-353 ◽  
Author(s):  
P. Cherukat ◽  
J.B. McLaughlin ◽  
A.L. Graham
1994 ◽  
Vol 263 ◽  
pp. 1-18 ◽  
Author(s):  
Pradeep Cherukat ◽  
John B. Mclaughlin

An expression which predicts the inertial lift, to lowest order, on a rigid sphere translating in a linear shear flow field near a flat infinite wall has been derived. This expression may be used when the wall lies within the inner region of the sphere's disturbance flow. It is valid even when the gap is small compared to the radius of the sphere. When the sphere is far from the wall, the lift force predicted by the present analysis converges to the value predicted by earlier analyses which consider the sphere as a point force or a force doublet singularity. The effect of rotation of the sphere on the lift has also been analysed.


1995 ◽  
Vol 302 ◽  
pp. 45-63 ◽  
Author(s):  
W. S. J. Uijttewaal ◽  
E. J. Nijhof

A fluid droplet subjected to shear flow deforms and rotates in the flow. In the presence of a wall the droplet migrates with respect to a material element in the undisturbed flow field. Neglecting fluid inertia, the Stakes problem for the droplet is solved using a boundary integral technique. It is shown how the time-dependent deformation, orientation, circulation and droplet viscosity. The migration velocities are calculated in the directions parallel and perpendicular to the wall, and compared with theoretical models and expeeriments. The results reveal some of the shortcomings of existiong models although not all diserepancies between our calculations and known experiments could be clarified.


2002 ◽  
Vol 473 ◽  
pp. 379-388 ◽  
Author(s):  
P. BAGCHI ◽  
S. BALACHANDAR

The lift forces on rigid spheres entrained in a vortex and a linear shear flow are computed using a direct numerical simulation. The sphere Reynolds number is in the range 10 to 100. The lift coefficient in a vortex is shown to be nearly two orders of magnitude higher than that in a shear flow. The inviscid mechanism is shown to be inadequate to account for the enhanced lift force. The effect of free rotation of the sphere is also shown to be too small to account for the enhanced lift force. Flow structure around the sphere is studied to explain the generation of the strong lift force in a vortex.


2021 ◽  
Vol 6 (10) ◽  
Author(s):  
Pengyu Shi ◽  
Roland Rzehak ◽  
Dirk Lucas ◽  
Jacques Magnaudet

2007 ◽  
Vol 570 ◽  
pp. 155-175 ◽  
Author(s):  
KEN-ICHI SUGIOKA ◽  
SATORU KOMORI

Drag and lift forces acting on a spherical water droplet in a homogeneous linear shear air flow were studied by means of a three-dimensional direct numerical simulation based on a marker and cell (MAC) method. The effects of the fluid shear rate and the particle (droplet) Reynolds number on drag and lift forces acting on a spherical droplet were compared with those on a rigid sphere. The results show that the drag coefficient on a spherical droplet in a linear shear flow increases with increasing the fluid shear rate. The difference in the drag coefficient between a spherical droplet and a rigid sphere in a linear shear flow never exceeds 4%. The lift force acting on a spherical droplet changes its sign from a positive to a negative value at a particle Reynolds number of Rep ≃ 50 in a linear shear flow and it acts from the high-speed side to the low-speed side for Rep ≥ 50. The behaviour of the lift coefficient on a spherical droplet is similar to that on a stationary rigid sphere and the change of sign is caused by the decrease of the pressure lift. The viscous lift on a spherical droplet is smaller than that on a rigid sphere at the same Rep, whereas the pressure lift becomes larger. These quantitative differences are caused by the flow inside a spherical droplet.


1999 ◽  
Vol 381 ◽  
pp. 63-87 ◽  
Author(s):  
EVGENY S. ASMOLOV

The inertial migration of a small rigid sphere translating parallel to the walls within a channel flow at large channel Reynolds numbers is investigated. The method of matched asymptotic expansions is used to solve the equations governing the disturbance flow past a particle at small particle Reynolds number and to evaluate the lift. Both neutrally and non-neutrally buoyant particles are considered. The wall-induced inertia is significant in the thin layers near the walls where the lift is close to that calculated for linear shear flow, bounded by a single wall. In the major portion of the flow, excluding near-wall layers, the wall effect can be neglected, and the outer flow past a sphere can be treated as unbounded parabolic shear flow. The effect of the curvature of the unperturbed velocity profile is significant, and the lift differs from the values corresponding to a linear shear flow even at large Reynolds numbers.


1993 ◽  
Vol 246 ◽  
pp. 249-265 ◽  
Author(s):  
John B. McLaughlin

This paper presents a closed-form solution for the inertial lift force acting on a small rigid sphere that translates parallel to a flat wall in a linear shear flow. The results provide connections between results derived by other workers for various limiting cases. An analytical form for the lift force is derived in the limit of large separations. Some new results are presented for the disturbance flow created by a small rigid sphere translating through an unbounded linear shear flow.


Sign in / Sign up

Export Citation Format

Share Document