[3H]thymidine autoradiographic study in the transit part from the spinal cord to the medulla oblongata of the chick embryo — the ontogenetic relation between the reticular formation and the spinal cord

1982 ◽  
Vol 34 (2) ◽  
pp. 105-110 ◽  
Author(s):  
Akira Kanemitsu
2006 ◽  
Vol 21 (1) ◽  
pp. 194-205 ◽  
Author(s):  
Ghanashyam D. Ghadge ◽  
Lijun Wang ◽  
Kamal Sharma ◽  
Anna Liza Monti ◽  
Vytas Bindokas ◽  
...  

Development ◽  
1992 ◽  
Vol 114 (3) ◽  
pp. 729-741 ◽  
Author(s):  
K.G. Storey ◽  
J.M. Crossley ◽  
E.M. De Robertis ◽  
W.E. Norris ◽  
C.D. Stern

Induction and regionalisation of the chick nervous system were investigated by transplanting Hensen's node into the extra-embryonic region (area opaca margin) of a host embryo. Chick/quail chimaeras were used to determine the contributions of host and donor tissue to the supernumerary axis, and three molecular markers, Engrailed, neurofilaments (antibody 3A10) and XlHbox1/Hox3.3 were used to aid the identification of particular regions of the ectopic axis. We find that the age of the node determines the regions of the nervous system that form: young nodes (stages 2–4) induced both anterior and posterior nervous system, while older nodes (stages 5–6) have reduced inducing ability and generate only posterior nervous system. By varying the age of the host embryo, we show that the competence of the epiblast to respond to neural induction declines after stage 4. We conclude that during normal development, the initial steps of neural induction take place before stage 4 and that anteroposterior regionalisation of the nervous system may be a later process, perhaps associated with the differentiating notochord. We also speculate that the mechanisms responsible for induction of head CNS differ from those that generate the spinal cord: the trunk CNS could arise by homeogenetic induction by anterior CNS or by elongation of neural primordia that are induced very early.


1947 ◽  
Vol s3-88 (1) ◽  
pp. 55-63
Author(s):  
R. A. R. GRESSON ◽  
I. ZLOTNIK

1. The Golgi material of the pyramidal cells of the cerebral cortex, the Purkinje cells of the cerebellum, and the multipolar cells of the medulla oblongata and ventral horns of the spinal cord of the sheep is present as filaments and as irregularly shaped bodies. In some of the cells, particularly in the lamb (Sheep V), the Golgi material has the appearance of a network. As it is frequently present as separate bodies it is suggested that it may always consist of discrete Golgi elements which are sometimes situated in close proximity or in contact with one another. Filamentous Golgi elements are present in the basal part of the cell processes. 2. An examination of neurones from the corresponding regions of the central nervous system of sheep infected experimentally with louping-ill showed that the Golgi material undergoes changes consequent upon the invasion of the cells by the virus. The Golgi material undergoes hypertrophy, and at the same time there is a reduction in the number of filamentous Golgi elements and a reduction in the amount of Golgi substance present in the cell processes. These changes are followed by fragmentation. All the neurones of a particular region are not affected equally at the same time. The Golgi material of the Purkinje cells tends to form groups in the cytoplasm prior to fragmentation. In the multipolar cells of the medulla oblongata the hypertrophy of the Golgi material is not as great as in the other regions of the central nervous system. The Golgi material of the motor nerve-cells of the ventral horns of the spinal cord undergoes considerable hypertrophy which is followed by a grouping of the Golgi elements and fragmentation.


Development ◽  
2017 ◽  
Vol 144 (24) ◽  
pp. 4645-4657 ◽  
Author(s):  
Katsuki Mukaigasa ◽  
Chie Sakuma ◽  
Tomoaki Okada ◽  
Shunsaku Homma ◽  
Takako Shimada ◽  
...  

1987 ◽  
Vol 57 (4) ◽  
pp. 1118-1129 ◽  
Author(s):  
F. R. Morales ◽  
J. K. Engelhardt ◽  
P. J. Soja ◽  
A. E. Pereda ◽  
M. H. Chase

It is well established that cholinergic agonists, when injected into the pontine reticular formation in cats, produce a generalized suppression of motor activity (1, 3, 6, 14, 18, 27, 33, 50). The responsible neuronal mechanisms were explored by measuring ventral root activity, the amplitude of the Ia-monosynaptic reflex, and the basic electrophysiological properties of hindlimb motoneurons before and after carbachol was microinjected into the pontine reticular formation of decerebrate cats. Intrapontine microinjections of carbachol (0.25-1.0 microliter, 16 mg/ml) resulted in the tonic suppression of ventral root activity and a decrease in the amplitude of the Ia-monosynaptic reflex. An analysis of intracellular records from lumbar motoneurons during the suppression of motor activity induced by carbachol revealed a considerable decrease in input resistance and membrane time constant as well as a reduction in motoneuron excitability, as evidenced by a nearly twofold increase in rheobase. Discrete inhibitory postsynaptic potentials were also observed following carbachol administration. The changes in motoneuron properties (rheobase, input resistance, and membrane time constant), as well as the development of discrete inhibitory postsynaptic potentials, indicate that spinal cord motoneurons were postsynaptically inhibited following the pontine administration of carbachol. In addition, the inhibitory processes that arose after carbachol administration in the decerebrate cat were remarkably similar to those that are present during active sleep in the chronic cat. These findings suggest that the microinjection of carbachol into the pontine reticular formation activates the same brain stem-spinal cord system that is responsible for the postsynaptic inhibition of alpha-motoneurons that occurs during active sleep.


Neuroscience ◽  
1989 ◽  
Vol 29 (3) ◽  
pp. 603-613 ◽  
Author(s):  
R.L.M. Faull ◽  
J.W. Villiger ◽  
M. Dragunow

Sign in / Sign up

Export Citation Format

Share Document