γ-Aminobutyric acid antagonist blocks baroreceptor-activated inhibition of neurosecretory cells in the hypothalamic paraventricular nucleus of rats

1987 ◽  
Vol 81 (3) ◽  
pp. 319-324 ◽  
Author(s):  
M. Kasai ◽  
T. Osaka ◽  
K. Inenaga ◽  
H. Kannan ◽  
H. Yamashita
2000 ◽  
Vol 84 (4) ◽  
pp. 1814-1825 ◽  
Author(s):  
Jason A. Luther ◽  
Katalin Cs. Halmos ◽  
Jeffrey G. Tasker

Type I putative magnocellular neurosecretory cells of the hypothalamic paraventricular nucleus (PVN) express a prominent transient outward rectification generated by an A-type potassium current. Described here is a slow transient outward current that alters cell excitability and firing frequency in a subset of type I PVN neurons (38%). Unlike most of the type I neurons (62%), the transient outward current in these cells was composed of two kinetically separable current components, a fast activating, fast inactivating component, resembling an A-type potassium current, and a slowly activating [10–90% rise time: 20.4 ± 12.8 (SE) ms], slowly inactivating component (time constant of inactivation: τ = 239.0 ± 66.1 ms). The voltage dependence of activation and inactivation and the sensitivity to block by 4-aminopyridine (5 mM) and tetraethylammonium chloride (10 mM) of the fast and slow components were similar. Compared to the other type I neurons, the neurons that expressed the slow transient outward current were less excitable when hyperpolarized, requiring larger current injections to elicit an action potential (58.5 ± 13.2 vs. 15.4 ± 2.4 pA; 250-ms duration; P < 0.01), displaying a longer delay to the first spike (184.9 ± 15.7 vs. 89.7 ± 8.8 ms with 250- to 1,000-ms, 50-pA current pulses; P < 0.01), and firing at a lower frequency (18.7 ± 4.6 vs. 37.0 ± 5.5 Hz with 100-pA current injections; P < 0.05). These data suggest that a distinct subset of type I PVN neurons express a novel slow transient outward current that leads to a lower excitability. Based on double labeling following retrograde transport of systemically administered fluoro-gold and intracellular injection of biocytin, these cells are neurosecretory and are similar morphologically to magnocellular neurosecretory cells, although it remains to be determined whether they are magnocellular neurons.


2001 ◽  
Vol 281 (4) ◽  
pp. R1114-R1118 ◽  
Author(s):  
Tetsuro Shirasaka ◽  
Satoshi Miyahara ◽  
Takato Kunitake ◽  
Qing-Hua Jin ◽  
Kazuo Kato ◽  
...  

Orexins, also called hypocretins, are newly discovered hypothalamic peptides that are thought to be involved in various physiological functions. In spite of the fact that orexin receptors, especially orexin receptor 2, are abundant in the hypothalamic paraventricular nucleus (PVN), the effects of orexins on PVN neurons remain unknown. Using a whole cell patch-clamp recording technique, we investigated the effects of orexin-B on PVN neurons of rat brain slices. Bath application of orexin-B (0.01–1.0 μM) depolarized 80.8% of type 1 ( n = 26) and 79.2% of type 2 neurons tested ( n = 24) in the PVN in a concentration-dependent manner. The effects of orexin-B persisted in the presence of TTX (1 μM), indicating that these depolarizing effects were generated postsynaptically. Addition of Cd2+(1 mM) to artificial cerebrospinal fluid containing TTX (1 μM) significantly reduced the depolarizing effect in type 2 neurons. These results suggest that orexin-B has excitatory effects on the PVN neurons mediated via a depolarization of the membrane potential.


1993 ◽  
Vol 128 (6) ◽  
pp. 485-492 ◽  
Author(s):  
Sandra Ceccatelli ◽  
Catello Orazzo

Using in situ hybridization we have studied the effects of different types of stressors, such as ether, immobilization, cold and swimming, on the expression of several peptide messenger ribonucleic acids (mRNAs) in the hypothalamic paraventricular nucleus of adult male rats. Paraventricular nucleus sections were hybridized using synthetic oligonucleotide probes complementary to mRNA for corticotropin-releasing hormone, neurotensin, enkephalin and thyrotropin-releasing hormone. A clear upregulation of neurotensin mRNA was seen after ether and, to a lesser extent, after immobilization stress, whereas after the two other stressors neurotensin mRNA was undetectable, as in control rats. An increase in enkephalin mRNA was observed in a selective region of the dorsal part of the medioparvocellular subdivision of the paraventricular nucleus only after ether and immobilization stress. No significant changes were seen in corticotropin-releasing hormone and thyrotropin-releasing hormone mRNA levels in any of the experimental paradigms. The present results show selective changes for various peptide mRNAs in the paraventricular nucleus after various types of stress. Significant effects could be demonstrated only on neurotensin and enkephalin mRNA after ether and immobilization stress. This suggests that adaptive changes in the rate of synthesis, processing and transport of the peptide may develop over a longer period of time.


Sign in / Sign up

Export Citation Format

Share Document