Estrogen induction of galanin synthesis in the rat anterior pituitary gland demonstrated by in situ hybridization and immunohistochemistry

1989 ◽  
Vol 100 (1-3) ◽  
pp. 59-64 ◽  
Author(s):  
Maria E. Vrontakis ◽  
Toshiharu Yamamoto ◽  
Ingo C. Schroedter ◽  
James I. Nagy ◽  
Henry G. Friesen
Peptides ◽  
2008 ◽  
Vol 29 (4) ◽  
pp. 571-577 ◽  
Author(s):  
Andrea Heinzlmann ◽  
Eszter Kirilly ◽  
Kinga Meltzer ◽  
Enikő Szabó ◽  
Akemichi Baba ◽  
...  

1997 ◽  
Vol 82 (11) ◽  
pp. 3842-3850 ◽  
Author(s):  
Kazumi Iino ◽  
Hironobu Sasano ◽  
Yutaka Oki ◽  
Noriaki Andoh ◽  
Ryong-Woon Shin ◽  
...  

Urocortin is a recently identified neuropeptide of the CRF family in the mammalian brain, but its expression in human tissue has been little studied. In this study, we examined urocortin expression in human anterior pituitary gland and pituitary adenomas by RIA, high performance liquid chromatography, immunohistochemistry, messenger ribonucleic acid (mRNA) in situ hybridization, and reverse transcriptase-PCR. Immunoreactive urocortin concentrations in normal pituitary tissue extract were 103.25 ± 39.05 ng/g wet wt (mean ± sem; n = 4), and their levels were all significantly higher than those in other portions of central nervous system of the same subjects. High performance liquid chromatography analysis of human pituitary extract demonstrated a single peak corresponding to that of the expected chromatographic mobility of synthetic human urocortin-(1–40). Urocortin-immunoreactive cells were detected in the anterior pituitary gland. Neither urocortin-immunoreactive nerve fibers nor cells were detected in the posterior lobe. Immunostaining in serial mirror tissue sections revealed that 76.55 ± 3.06% of urocortin-immunoreactive cells expressed GH immunoreactivity, whereas 22.25 ± 3.02% and less than 1% of urocortin-immunoreactive cells expressed PRL and ACTH, respectively. mRNA hybridization signals of urocortin were also detected in urocortin-immunopositive pituitary cells. The reverse transcriptase-PCR analysis demonstrated a 145-bp RNA band corresponding to that of the expected length of urocortin in all cases of normal pituitary glands examined (n = 3). We also immunostained urocortin in 52 cases of human anterior pituitary adenomas, including GH-producing adenomas (n = 14), ACTH-producing adenomas (n = 13), PRL-producing adenomas (n = 11), and nonfunctioning hormonally inactive adenomas (n = 14). No urocortin immunoreactivity was detected in these adenoma cells, except for one case of GH-producing adenoma and one case of nonfunctioning adenoma. We also performed mRNA in situ hybridization in 27 adenomas. No hybridization signals were detected in these adenomas, except in two cases. The results described above indicated that urocortin is synthesized in human anterior pituitary cells and may play an important role in biological features of normal pituitary gland, possibly as an autocrine or a paracrine regulator.


1979 ◽  
Vol 16 (2) ◽  
pp. 99-112 ◽  
Author(s):  
Thérèse Di Paolo ◽  
Réjean Carmichael ◽  
Fernand Labrie ◽  
Jean-Pierre Raynaud

1984 ◽  
Vol 100 (2) ◽  
pp. 219-226 ◽  
Author(s):  
S. A. Nicholson ◽  
T. E. Adrian ◽  
B. Gillham ◽  
M. T. Jones ◽  
S. R. Bloom

ABSTRACT The effect of six hypothalamic peptides on the basal release of ACTH and that induced by arginine vasopressin (AVP) or by ovine corticotrophin releasing factor (oCRF) from fragments of the rat anterior pituitary gland incubated in vitro was investigated. Dose–response curves to AVP and to oCRF were obtained, and the response to a low dose of oCRF was potentiated by a low dose of AVP. Basal release of ACTH was not affected by any of the peptides in concentrations in the range 10−12 to 10−6 mol/l, and only substance P (SP) and somatostatin (SRIF) inhibited significantly the response to oCRF in a dose-related manner. The responses to a range of doses of oCRF or AVP were reduced by 10−8 and 10 − 6 mol SP or SRIF/1, and to a greater extent by the higher dose. Except in the case of 10−6 mol SRIF/1 on the response to AVP, the response was not further diminished by preincubation of the tissue with the peptide before the stimulating agent was added. The inhibition of the responses to AVP or oCRF by 10−9 mol SP/1 was not potentiated by its combination with either 5 × 10−10 or 10−8 mol SRIF/1; the inhibitory effects were merely additive. The results suggest that although SRIF and SP are able to modulate the release of ACTH from the anterior pituitary gland, they do so only at a high concentration. In the case of SRIF these concentrations are several orders of magnitude higher than those reported to be present in the hypophysial portal blood and therefore a physiological role for this peptide in the control of ACTH secretion is unlikely. J. Endocr. (1984) 100, 219–226


Sign in / Sign up

Export Citation Format

Share Document