Differential effects of protein kinase inhibitors on pre-established long-term potentiation in rat hippocampal neurons in vitro

1991 ◽  
Vol 121 (1-2) ◽  
pp. 259-262 ◽  
Author(s):  
Henry Matthies ◽  
Thomas Behnisch ◽  
Hiroshi Kase ◽  
Hansjürgen Matthies ◽  
Klaus G. Reymann
1996 ◽  
Vol 76 (5) ◽  
pp. 3038-3047 ◽  
Author(s):  
I. Cavus ◽  
T. Teyler

1. The effects of protein kinase inhibitors on N-methyl-D-aspartate (NMDA)-receptor-mediated, voltage-dependent calcium channel (VDCC)-mediated, and 100-Hz long-term potentiation (LTP) were studied in area CA1 of rat hippocampal slices. 2. A 25-Hz tetanus induced a quickly developing potentiation that was blocked by the NMDA antagonist D,L-2-amino-5-phosphonovaleric acid (APV) and was not affected by the L-type VDCC inhibitor nifedipine, suggesting that it was mediated by NMDA receptors (NMDA-LTP). 3. Application of a 200-Hz tetanus in APV induced a slowly developing NMDA-receptor-independent potentiation that was blocked by nifedipine and thus named VDCC-LTP. NMDA- and VDCC-LTP reached comparable magnitudes despite their different induction parameters and developmental kinetics. 4. Bath perfusion of the broad-spectrum serine/threonine kinase inhibitor 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7) blocked NMDA-LTP but not VDCC-LTP, whereas the tyrosine kinase inhibitors genistein and lavendustin A blocked VDCC-LTP but not NMDA-LTP. These results suggest a differential involvement of H-7-sensitive serine/threonine kinases and tyrosine kinases in the two forms of LTP. 5. Tetanization of 200 Hz in control media resulted in a compound potentiation twice as large as NMDA- or VDCC-LTP, implying that the two forms of LTP did not facilitate or reduce each other's expression. The often-used 100-Hz tetanus (1 s twice) induced a potentiation that was comparable in size with the 200-Hz compound LTP. Nifedipine, genistein, and lavendustin A reduced the 100-Hz LTP by approximately 50%, suggesting that this LTP is also a compound potentiation consisting of NMDA- and VDCC-mediated components and their corresponding signal transduction pathways.


1993 ◽  
Vol 69 (5) ◽  
pp. 1774-1778 ◽  
Author(s):  
V. Crepel ◽  
C. Hammond ◽  
K. Krnjevic ◽  
P. Chinestra ◽  
Y. Ben-Ari

1. The effects of an anoxic-aglycemic episode (1-3 min) on the pharmacologically isolated N-methyl-D-aspartate (NMDA)-mediated responses were examined in CA1 pyramidal hippocampal neurons in vitro. 2. An anoxic-aglycemic episode induced a long term potentiation (LTP) of the NMDA receptor-mediated field excitatory post-synoptic potentials (EPSPs). This LTP, referred to as anoxic LTP, was observed in the presence of 1) a normal Mg2+ concentration [+40.1 +/- 5% (mean +/- SE)], 2) a low Mg2+ concentration (+52.2 +/- 10%), or 3) a Mg2+ free (+49 +/- 11%), 1 h after anoxia. 3. Bath application of D-2-amino-5-phosphonovaleric acid (D-APV, 20 microM, 15-21 min) before, during, and after the anoxic-aglycemic episode, which transiently blocked the synaptic NMDA receptor mediated response, prevented the induction of anoxic LTP. 4. The intracellularly recorded NMDA receptor-mediated EPSP was also persistently potentiated by anoxia-aglycemia (+47 +/- 4%). This potentiation was not associated with changes in membrane potential or input resistance. 5. These findings provide the first evidence that an anoxic-aglycemic episode induces an LTP of NMDA receptor-mediated responses. This potentiation may participate in the cascade of events that lead to delayed neuronal death.


2007 ◽  
Vol 282 (46) ◽  
pp. 33305-33312 ◽  
Author(s):  
Matthew Townsend ◽  
Tapan Mehta ◽  
Dennis J. Selkoe

Numerous studies have now shown that the amyloid β-protein (Aβ), the principal component of cerebral plaques in Alzheimer disease, rapidly and potently inhibits certain forms of synaptic plasticity. The amyloid (or Aβ) hypothesis proposes that the continuous disruption of normal synaptic physiology by Aβ contributes to the development of Alzheimer disease. However, there is little consensus about how Aβ mediates this inhibition at the molecular level. Using mouse primary hippocampal neurons, we observed that a brief treatment with cell-derived, soluble, human Aβ disrupted the activation of three kinases (Erk/MAPK, CaMKII, and the phosphatidylinositol 3-kinase-activated protein Akt/protein kinase B) that are required for long term potentiation, whereas two other kinases (protein kinase A and protein kinase C) were stimulated normally. An antagonist of the insulin receptor family of tyrosine kinases was found to mimic the pattern of Aβ-mediated kinase inhibition. We then found that soluble Aβ binds to the insulin receptor and interferes with its insulin-induced autophosphorylation. Taken together, these data demonstrate that physiologically relevant levels of naturally secreted Aβ interfere with insulin receptor function in hippocampal neurons and prevent the rapid activation of specific kinases required for long term potentiation.


Nature ◽  
1987 ◽  
Vol 328 (6129) ◽  
pp. 426-429 ◽  
Author(s):  
G.-Y. Hu ◽  
Ø. Hvalby ◽  
S. I. Walaas ◽  
K. A. Albert ◽  
P. Skjeflo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document