Histo- and cytochemical property of thiamine monophosphatase activity in the substantia. Gelatinosa (SG) of the rat

Pain ◽  
1981 ◽  
Vol 11 ◽  
pp. S135
Author(s):  
K. Inomata ◽  
M. Sakai ◽  
K. Ogawa
1986 ◽  
Vol 34 (3) ◽  
pp. 363-371 ◽  
Author(s):  
E Knyihár-Csillik ◽  
A Bezzegh ◽  
S Böti ◽  
B Csillik

Thiamine monophosphatase (TMPase) has been selectively localized in small dorsal root ganglion cells and in their central and peripheral terminals. Light microscopic localization of TMPase, and its alterations due to transganglionic effects, are identical with those of fluoride-resistant acid phosphatase (FRAP), but are not contaminated by the ubiquitous lysosomal reaction inevitable in trivial acid phosphatase-stained sections. TMPase is inhibited by 0.1 mM NaF, which is slightly less than the concentration needed to inhibit FRAP (0.2-0.4 mM). It is assumed that TMPase and FRAP are identical enzymes. In the perikaryon of small dorsal root ganglion cells, TMPase is located in the cisterns of the endoplasmic reticulum and in the Golgi apparatus. The central terminals of these cells are scalloped (sinusoid) axon terminals, surrounded by membrane-bound TMPase activity. Central terminals outline substantia gelatinosa Rolandi throughout the spinal cord, as well as the analogous nucleus spinalis trigemini in the medulla. TMPase-active central terminals outline "faisceau de la corne postérieure" in the sacral cord, as well as Lissauer's tract in the thoracic, upper lumbar, and sacral segments, and the paratrigeminal nucleus and the terminal (sensory) nucleus of the ala cinerea in the brainstem. Peripheral terminals displaying TMPase activity are fine nerve plexuses of C fibers. The TMPase activity of the central terminals disappears after dorsal rhizotomy in the course of Wallerian degeneration, and is depleted in the course of transganglionic degenerative atrophy (after transection of the related peripheral sensory nerve). TMPase is an outstanding genuine marker for the study of transganglionic regulation in Muridae.


2021 ◽  
Vol 70 (4) ◽  
pp. 429-444
Author(s):  
Franz Nürnberger ◽  
Stephan Leisengang ◽  
Daniela Ott ◽  
Jolanta Murgott ◽  
Rüdiger Gerstberger ◽  
...  

Abstract Objective Bacterial lipopolysaccharide (LPS) may contribute to the manifestation of inflammatory pain within structures of the afferent somatosensory system. LPS can induce a state of refractoriness to its own effects termed LPS tolerance. We employed primary neuro-glial cultures from rat dorsal root ganglia (DRG) and the superficial dorsal horn (SDH) of the spinal cord, mainly including the substantia gelatinosa to establish and characterize a model of LPS tolerance within these structures. Methods Tolerance was induced by pre-treatment of both cultures with 1 µg/ml LPS for 18 h, followed by a short-term stimulation with a higher LPS dose (10 µg/ml for 2 h). Cultures treated with solvent were used as controls. Cells from DRG or SDH were investigated by means of RT-PCR (expression of inflammatory genes) and immunocytochemistry (translocation of inflammatory transcription factors into nuclei of cells from both cultures). Supernatants from both cultures were assayed for tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) by highly sensitive bioassays. Results At the mRNA-level, pre-treatment with 1 µg/ml LPS caused reduced expression of TNF-α and enhanced IL-10/TNF-α expression ratios in both cultures upon subsequent stimulation with 10 µg/ml LPS, i.e. LPS tolerance. SDH cultures further showed reduced release of TNF-α into the supernatants and attenuated TNF-α immunoreactivity in microglial cells. In the state of LPS tolerance macrophages from DRG and microglial cells from SDH showed reduced LPS-induced nuclear translocation of the inflammatory transcription factors NFκB and NF-IL6. Nuclear immunoreactivity of the IL-6-activated transcription factor STAT3 was further reduced in neurons from DRG and astrocytes from SDH in LPS tolerant cultures. Conclusion A state of LPS tolerance can be induced in primary cultures from the afferent somatosensory system, which is characterized by a down-regulation of pro-inflammatory mediators. Thus, this model can be applied to study the effects of LPS tolerance at the cellular level, for example possible modifications of neuronal reactivity patterns upon inflammatory stimulation.


1998 ◽  
Vol 80 (6) ◽  
pp. 2954-2962 ◽  
Author(s):  
S. P. Schneider ◽  
W. A. Eckert ◽  
A. R. Light

Schneider, S. P., W. A. Eckert III, and A. R. Light. Opioid-activated postsynaptic, inward rectifying potassium currents in whole cell recordings in substantia gelatinosa neurons. J. Neurophysiol. 80: 2954–2962, 1998. Using tight-seal, whole cell recordings from isolated transverse slices of hamster and rat spinal cord, we investigated the effects of the μ-opioid agonist (d-Ala2, N-Me-Phe4,Gly5-ol)-enkephalin (DAMGO) on the membrane potential and conductance of substantia gelatinosa (SG) neurons. We observed that bath application of 1–5 μM DAMGO caused a robust and repeatable hyperpolarization in membrane potential ( V m) and decrease in neuronal input resistance ( R N) in 60% (27/45) of hamster neurons and 39% (9/23) of rat neurons, but significantly only when ATP (2 mM) and guanosine 5′-triphosphate (GTP; 100 μM) were included in the patch pipette internal solution. An ED50 of 50 nM was observed for the hyperpolarization in rat SG neurons. Because G-protein mediation of opioid effects has been shown in other systems, we tested if the nucleotide requirement for opioid hyperpolarization in SG neurons was due to G-protein activation. GTP was replaced with the nonhydrolyzable GTP analogue guanosine-5′- O-(3-thiotriphosphate) (GTP-γ-S; 100 μM), which enabled DAMGO to activate a nonreversible membrane hyperpolarization. Further, intracellular application of guanosine-5′- O-(2-thiodiphosphate) (GDP-β-S; 500 μM), which blocks G-protein activation, abolished the effects of DAMGO. We conclude that spinal SG neurons are particularly susceptible to dialysis of GTP by whole cell recording techniques. Moreover, the depletion of GTP leads to the inactivation of G-proteins that mediate μ-opioid activation of an inward-rectifying, potassium conductance in these neurons. These results explain the discrepancy between the opioid-activated hyperpolarization in SG neurons observed in previous sharp electrode experiments and the more recent failures to observe these effects with whole cell patch techniques.


Sign in / Sign up

Export Citation Format

Share Document