Detection of Cryptosporidium parvum using a specific polymerase chain reaction

1993 ◽  
Vol 50 (1-2) ◽  
pp. 35-44 ◽  
Author(s):  
Katherine A. Webster ◽  
Jonothan D.E. Pow ◽  
Michaela Giles ◽  
Janet Catchpole ◽  
Martin J. Woodward
Parasitology ◽  
2002 ◽  
Vol 125 (1) ◽  
pp. 35-44 ◽  
Author(s):  
M. GILES ◽  
D. C. WARHURST ◽  
K. A. WEBSTER ◽  
D. M. WEST ◽  
J. A. MARSHALL

A multiplex allele specific polymerase chain reaction (MAS-PCR) based on the Cryptosporidium parvum dihydrofolate reductase (dhfr) gene sequence differentiates genotype 1 (‘Human’) from 2 (‘Cattle’) in a 1-step reaction. The MAS-PCR was validated on a panel of 34 microscopically positive C. parvum faecal samples of human and animal origin in comparison with 2 published PCR-restriction fragment length polymorphism (RFLP) methods targeting dhfr and the oocyst wall protein (cowp) genes. A validation panel of 37 negative faecal samples of human and animal origin was also tested in comparison with the cowp PCR-RFLP. MAS-PCR was found to be as sensitive for species detection as the most sensitive of the other tests, and detected more mixed genotype infections than the two other tests combined. In addition the MAS-PCR showed equivalent detection sensitivity in comparison with a published nested RFLP targeting the SSU rRNA gene, on a panel of prepared mixed genotype samples. The 1-step reaction is simpler and less expensive to perform than the RFLP methods, while the C. parvum specific amplicons and those for genotypes 1 and 2 (575, 357 and 190 bp respectively) can be easily distinguished on agarose gel.


2020 ◽  
Vol 48 (1) ◽  
pp. 62-72
Author(s):  
E. A. Ershova

Сalanoid copepods of the genus Pseudocalanus play an important role in the plankton communities of the Arctic and boreal seas, often dominating in numbers and constituting a significant proportion of the biomass of zooplankton. Despite their high presence and significance in the shelf plankton communities, species-specific studies of the biology of these are significantly hampered by extremely small morphological differences between them, especially at the juvenile stages, at which they are virtually indistinguishable. In this paper, we describe a new, routine and low-cost molecular method for identifying all Pseudocalanus species found in the Atlantic sector of the Arctic: the Arctic P. acuspes, P. minutus and the boreal P. moultoni and P. elongatus, and apply it to describe the relative distribution of these species in four locations of the Arctic and sub-Arctic. With this method, species-specific polymerase chain reaction (ssPCR), mass identification of individuals of any developmental stage, including nauplii, is possible. This method can serve as an excellent tool for studying the species-specific biology of this group, describing their life cycles, as well as monitoring changes in Arctic marine ecosystems under the influence of changing climate.


Plant Disease ◽  
2002 ◽  
Vol 86 (11) ◽  
pp. 1237-1239 ◽  
Author(s):  
R. H. Brlansky ◽  
V. D. Damsteegt ◽  
J. S. Hartung

Citrus variegated chlorosis (CVC) is an economically important, destructive disease in Brazil and is caused by the bacterium Xylella fastidiosa Wells. The bacterium has been found to be transmitted in Brazil by sharpshooter leafhoppers (Cicadellidae). Sharpshooters are present in most citrus growing areas of the United States. The sharpshooter leafhopper, Oncometopia nigricans Walker, frequently is found feeding on citrus in Florida. This sharpshooter transmits the X. fastidiosa strains that cause Pierce's disease of grape and ragweed stunt. Research was initiated to determine if O. nigricans was capable of vectoring the X. fastidiosa that causes CVC. In 59 different transmission tests, using 1 to 57 insects per test, transmission of the bacterium was observed 12 times (20.3%). Symptom development in the greenhouse was not a reliable indicator of transmission. Transmission was verified by specific polymerase chain reaction-based assays. Individual insects were able to transmit the bacterium. This information on sharpshooter transmission of CVC is needed to assess the threat posed by the CVC disease to the citrus industries in the United States.


2008 ◽  
Vol 57 (4) ◽  
pp. 754-763 ◽  
Author(s):  
O. Bahar ◽  
M. Efrat ◽  
E. Hadar ◽  
B. Dutta ◽  
R. R. Walcott ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document