The effect of calcium on somatostatin inhibition of insulin release and cyclic AMP production in mouse pancreatic islets

1979 ◽  
Vol 585 (2) ◽  
pp. 240-249 ◽  
Author(s):  
L. Bent-Hansen ◽  
K. Capito ◽  
C.J. Hedeskov
1973 ◽  
Vol 134 (2) ◽  
pp. 599-605 ◽  
Author(s):  
R. H. Cooper ◽  
S. J. H. Ashcroft ◽  
P. J. Randle

A protein-binding radioassay for cyclic AMP was modified to detect less than 0.025pmol of the nucleotide. The method was applied to the measurement of cyclic AMP in small numbers of mouse pancreatic islets (as little as 25μg of tissue) by use of barium acetate–H2SO4 for deproteinization. The concentration of cyclic AMP in mouse islets incubated in media containing 3.3 or 20mm-glucose was 0.016pmol/10 islets (approx. 1μm in intracellular water). Glucose concentration (3.3 or 20mm) had no detectable effect on islet concentrations of cyclic AMP with periods of incubation or perifusion ranging from 0.5 to 60min, although insulin release rate was rapidly increased by 20mm-glucose. Caffeine (5mm) or 3-isobutyl-1-methylxanthine (1mm), which are known inhibitors of islet cyclic AMP phosphodiesterase, produced marked and rapid increases in islet cyclic AMP concentration at 3.3 or 20mm-glucose, but only enhanced the insulin release rate at the higher glucose concentration. The role of cyclic AMP in insulin release induced by glucose is discussed.


1976 ◽  
Vol 158 (2) ◽  
pp. 335-340 ◽  
Author(s):  
K Capito ◽  
C J Hedeskov

Inosine is a potent primary stimulus of insulin secretion from isolated mouse islets. The inosine-induced insulin secretion was totally depressed during starvation, but was completely restored by the addition of 5 mM-caffeine to the medium and partially restored by the addition of 5 mM-glucose. Mannoheptulose (3 mg/ml) potentiated the effect of 10 mM-inosine in islets from fed mice. The mechanism of the stimulatory effect of inosine was further investigated, and it was demonstrated that pancreatic islets contain a nucleoside phosphorylase capable of converting inosine into hypoxanthine and ribose 1-phosphate. Inosine at 10 mM concentration increased the lactate production and the content of ATP, glucose 6-phosphate (fructose 1,6-diphosphate + triose phosphates) and cyclic AMP in islets from fed mice. In islets from starved mice inosine-induced lactate production was decreased and no change in the concentration of cyclic AMP could be demonstrated, whereas the concentration of ATP and glucose 6-phosphate rose. Inosine (10 mM) induced a higher concentration of (fructose 1,6-diphosphate + triose phosphates) in islets from starved mice than in islets from fed mice suggesting that in starvation the activities of glyceraldehyde 3-phosphate dehydrogenase or other enzymes below this step in glycolysis are decreased. Formation of glucose from inosine was negligible. Inosine had no direct effect on adenylate cyclase activity in islet homogenates. The observed changes in insulin secretion and islet metabolism mimic what is seen when glucose and glyceraldehyde stimulate insulin secretion, and as neither ribose nor hypoxanthine-stimulated insulin release, the results are interpreted as supporting the substrate-site hypothesis for glucose-induced insulin secretion according to which glucose has to be metabolized in the beta-cells before secretion is initiated.


1974 ◽  
Vol 140 (3) ◽  
pp. 377-382 ◽  
Author(s):  
Arne Andersson

Rates of glucose oxidation and insulin release in response to a wide range of glucose concentrations were studied in short-term experiments in isolated mouse pancreatic islets maintained in tissue culture for 6 days at either a physiological glucose concentration (6.7mm) or at a high glucose concentration (28mm). The curves relating glucose oxidation or insulin release to the extracellular glucose concentration obtained with islets cultured in 6.7mm-glucose displayed a sigmoid shape similar to that observed for freshly isolated non-cultured islets. By contrast islets that had been cultured in 28mm-glucose showed a linear relationship between the rate of glucose oxidation and the extracellular glucose concentration up to about 8mm-glucose. The maximal oxidative rate was twice that of the non-cultured islets and the glucose concentration associated with the half-maximal rate considerably decreased. In islets cultured at 28mm-glucose there was only a small increase in the insulin release in response to glucose, probably due to a depletion of stored insulin in those B cells that had been cultured in a high-glucose medium. It is concluded that exposure of B cells for 6 days to a glucose concentration comparable with that found in diabetic individuals causes adaptive metabolic alterations rather than degeneration of these cells.


1987 ◽  
Vol 248 (1) ◽  
pp. 109-115 ◽  
Author(s):  
J Sehlin

Microdissected beta-cell-rich pancreatic islets of non-inbred ob/ob mice were used in studies of how perchlorate (CIO4-) affects stimulus-secretion coupling in beta-cells. CIO4- at 16 mM potentiated D-glucose-induced insulin release, without inducing secretion at non-stimulatory glucose concentrations. The potentiation mainly applied to the first phase of stimulated insulin release. In the presence of 20 mM-glucose, the half-maximum effect of CIO4- was reached at 5.5 mM and maximum effect at 12 mM of the anion. The potentiation was reversible and inhibitable by D-mannoheptulose (20 mM) or Ca2+ deficiency. CIO4- at 1-8 mM did not affect glucose oxidation. The effects on secretion were paralleled by a potentiation of glucose-induced 45Ca2+ influx during 3 min. K+-induced insulin secretion and 45Ca2+ uptake were potentiated by 8-16 mM-CIO4-. The spontaneous inactivation of K+-induced (20.9 mM-K+) insulin release was delayed by 8 mM-CIO4-. The anion potentiated the 45Ca2+ uptake induced by glibenclamide, which is known to depolarize the beta-cell. Insulin release was not affected by 1-10 mM-trichloroacetate. It is suggested that CIO4- stimulates the beta-cell by affecting the gating of voltage-controlled Ca2+ channels.


1988 ◽  
Vol 254 (4) ◽  
pp. E454-E458 ◽  
Author(s):  
H. Kofod ◽  
D. Andreu ◽  
P. Thams ◽  
R. B. Merrifield ◽  
C. J. Hedeskov ◽  
...  

Secretin and glucagon potentiate glucose-induced insulin release. We have compared the effects of secretin and glucagon with that of four hybrid molecules of the two hormones on insulin release and formation of cyclic AMP (cAMP) in isolated mouse pancreatic islets. All six peptides potentiated the release of insulin at 10 mM D-glucose, and their effects were indistinguishable with respect to the dynamics of release, dose-response relationship, and glucose dependency. However, measurements of cAMP accumulation in the presence of the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (10(-4) M) showed that the fold increase compared with glucose alone had the following ranking order: secretin = [Tyr10, Tyr13]-secretin 1.6 less than [Tyr10, Tyr13, Trp25]secretin 1.8 less than glucagon 1.9 less than [Asp3, Glu9, Arg12]glucagon 2.3 = [Asp3, Glu9]glucagon. These results suggest that despite similar potentiating effects of secretin and glucagon on glucose-induced insulin release, their modes of action may be different.


1988 ◽  
Vol 253 (1) ◽  
pp. 229-234 ◽  
Author(s):  
P Thams ◽  
K Capito ◽  
C J Hedeskov

The mechanism of glucose-stimulated cyclic AMP accumulation in mouse pancreatic islets was studied. In the presence of 3-isobutyl-1-methylxanthine, both glucose and the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA), an activator of protein kinase C, enhanced cyclic AMP formation 2.5-fold during 60 min of incubation. Both TPA-stimulated and glucose-stimulated cyclic AMP accumulations were abolished by the omission of extracellular Ca2+. The Ca2+ ionophore A23187 did not affect cyclic AMP accumulation itself, but affected the time course of TPA-induced cyclic AMP accumulation, the effect of A23187 + TPA mimicking the time course for glucose-induced cyclic AMP accumulation. A 24 h exposure to TPA, which depletes islets of protein kinase C, abolished the effects of both TPA and glucose on cyclic AMP production. Both TPA-induced and glucose-induced cyclic AMP productions were inhibited by anti-glucagon antibody, and after pretreatment with this antibody glucose stimulation was dependent on addition of glucagon. Pretreatment of islets with TPA for 10 min potentiated glucagon stimulation and impaired somatostatin inhibition of adenylate cyclase activity in a particulate fraction of islets. Carbamoylcholine, which is supposed to activate protein kinase C in islets, likewise stimulated cyclic AMP accumulation in islets. These observations suggest that glucose stimulates islet adenylate cyclase by activation of protein kinase C, and thereby potentiates the effect of endogenous glucagon on adenylate cyclase.


1987 ◽  
Vol 241 (1) ◽  
pp. 161-167 ◽  
Author(s):  
C J Hedeskov ◽  
K Capito ◽  
P Thams

When the extracellular concentration of glucose was raised from 3 mM to 7 mM (the concentration interval in which beta-cell depolarization and the major decrease in K+ permeability occur), the cytosolic free [NADPH]/[NADP+] ratio in mouse pancreatic islets increased by 29.5%. When glucose was increased to 20 mM, a 117% increase was observed. Glucose had no effect on the cytosolic free [NADH]/[NAD+] ratio. Neither the cytosolic free [NADPH]/[NADP+] ratio nor the corresponding [NADH]/[NAD+] ratio was affected when the islets were incubated with 20 mM-fructose or with 3 mM-glucose + 20 mM-fructose, although the last-mentioned condition stimulated insulin release. The insulin secretagogue leucine (10 mM) stimulated insulin secretion, but lowered the cytosolic free [NADPH]/[NADP+] ratio; 10 mM-leucine + 10 mM-glutamine stimulated insulin release and significantly enhanced both the [NADPH]/[NADP+] ratio and the [NADH]/[NAD+] ratio. It is concluded that the cytosolic free [NADPH]/[NADP+] ratio may be involved in coupling beta-cell glucose metabolism to beta-cell depolarization and ensuing insulin secretion, but it may not be the sole or major coupling factor in nutrient-induced stimulation of insulin secretion.


1982 ◽  
Vol 721 (2) ◽  
pp. 178-184 ◽  
Author(s):  
Michael Welsh ◽  
Claes Hellerström ◽  
Arne Andersson

1978 ◽  
Vol 176 (2) ◽  
pp. 619-621 ◽  
Author(s):  
A Andersson

To test further the hypothesis that ribonucleosides stimulate insulin secretion and biosynthesis by producing metabolic signals, the effects of starvation on adenosine-stimulated insulin production and the oxidation of adenosine by isolated mouse pancreatic islets were examined. No direct correlation was found between the metabolic flux and insulin secretion, since the starvation-induced impairment of the adenosine-stimulated insulin secretion was accompanied by an increased rate of adenosine oxidation. Adenosine-stimulated insulin biosynthesis was, however, unaffected by starvation.


Sign in / Sign up

Export Citation Format

Share Document