scholarly journals Synchronization of area CA3 hippocampal pyramidal cells and non-granule cells of the dentate gyrus in bicuculline-treated rat hippocampal slices

Neuroscience ◽  
1994 ◽  
Vol 59 (2) ◽  
pp. 245-257 ◽  
Author(s):  
H.E. Scharfman
1994 ◽  
Vol 72 (5) ◽  
pp. 2167-2180 ◽  
Author(s):  
H. E. Scharfman

1. Simultaneous intracellular recordings of area CA3 pyramidal cells and dentate hilar “mossy” cells were made in rat hippocampal slices to test the hypothesis that area CA3 pyramidal cells excite mossy cells monosynaptically. Mossy cells and pyramidal cells were differentiated by location and electrophysiological characteristics. When cells were impaled near the border of area CA3 and the hilus, their identity was confirmed morphologically after injection of the marker Neurobiotin. 2. Evidence for monosynaptic excitation of a mossy cell by a pyramidal cell was obtained in 7 of 481 (1.4%) paired recordings. In these cases, a pyramidal cell action potential was followed immediately by a 0.40 to 6.75 (mean, 2.26) mV depolarization in the simultaneously recorded mossy cell (mossy cell membrane potentials, -60 to -70 mV). Given that pyramidal cells used an excitatory amino acid as a neurotransmitter (Cotman and Nadler 1987; Ottersen and Storm-Mathisen 1987) and recordings were made in the presence of the GABAA receptor antagonist bicuculline (25 microM), it is likely that the depolarizations were unitary excitatory postsynaptic potentials (EPSPs). 3. Unitary EPSPs of mossy cells were prone to apparent “failure.” The probability of failure was extremely high (up to 0.72; mean = 0.48) if the effects of all presynaptic action potentials were examined, including action potentials triggered inadvertently during other spontaneous EPSPs of the mossy cell. Probability of failure was relatively low (as low as 0; mean = 0.24) if action potentials that occurred during spontaneous activity of the mossy cell were excluded. These data suggest that unitary EPSPs produced by pyramidal cells are strongly affected by concurrent synaptic inputs to the mossy cell. 4. Unitary EPSPs were not clearly affected by manipulation of the mossy cell's membrane potential. This is consistent with the recent report that area CA3 pyramidal cells innervate distal dendrites of mossy cells (Kunkel et al. 1993). Such a distal location also may contribute to the high incidence of apparent failures. 5. Characteristics of unitary EPSPs generated by pyramidal cells were compared with the properties of the unitary EPSPs produced by granule cells. In two slices, pyramidal cell and granule cell inputs to the same mossy cell were compared. In other slices, inputs to different mossy cells were compared. In all experiments, unitary EPSPs produced by granule cells were larger in amplitude but similar in time course to unitary EPSPs produced by pyramidal cells. Probability of failure was lower and paired-pulse facilitation more common among EPSPs triggered by granule cells.(ABSTRACT TRUNCATED AT 400 WORDS)


2003 ◽  
Vol 89 (3) ◽  
pp. 1339-1342 ◽  
Author(s):  
Siriporn C. Chattipakorn ◽  
Lori L. McMahon

Previously we have shown that strychnine-sensitive glycine-gated chloride channels (GlyRs) are functionally expressed by CA1 pyramidal cells and GABAergic interneurons in mature rat hippocampal slices. We now report that glycine application to dentate granule cells and hilar interneurons recorded in acute slices from adolescent rats elicits a strychnine-sensitive current similar to glycine-mediated currents recorded in area CA1, indicating that GlyRs are also present on neurons in the dentate gyrus. This finding suggests that GlyRs have a widespread distribution in the hippocampal region. The physiological role of GlyRs in forebrain is unclear, but it is possible that these receptors mediate neuronal inhibition, similar to γ-aminobutyric acid-A (GABAA) receptors and thus could be a novel target for antiepileptic therapy. Therefore we tested the hypothesis that activation of inhibitory GlyRs could suppress neuronal hyperexcitability in dentate, a brain region vulnerable to epileptic activity. In whole-cell current-clamp recordings of granule cells, we observed a membrane potential hyperpolarization followed by cessation of the action potential firing pattern in hyperexcitable slices induced by elevated extracellular K+ or by blocking GABAA receptors with bicuculline. The GlyR antagonist, strychnine, prevented the antiepileptic effect of glycine. These results demonstrate that glycine, acting at GlyRs, elicits neuronal inhibition in dentate. Further, our findings suggest the possibility that these receptors could be a therapeutic target for the treatment of epilepsy.


2002 ◽  
Vol 87 (5) ◽  
pp. 2624-2628 ◽  
Author(s):  
Zoltan Nusser ◽  
Istvan Mody

In some nerve cells, activation of GABAA receptors by GABA results in phasic and tonic conductances. Transient activation of synaptic receptors generates phasic inhibition, whereas tonic inhibition originates from GABA acting on extrasynaptic receptors, like in cerebellar granule cells, where it is thought to result from the activation of extrasynaptic GABAA receptors with a specific subunit composition (α6βxδ). Here we show that in adult rat hippocampal slices, extracellular GABA levels are sufficiently high to generate a powerful tonic inhibition in δ subunit–expressing dentate gyrus granule cells. In these cells, the mean tonic current is approximately four times larger than that produced by spontaneous synaptic currents occurring at a frequency of ∼10 Hz. Antagonizing the GABA transporter GAT-1 with NO-711 (2.5 μM) selectively enhanced tonic inhibition by 330% without affecting the phasic component. In contrast, by prolonging the decay of inhibitory postsynaptic currents (IPSCs), the benzodiazepine agonist zolpidem (0.5 μM) augmented phasic inhibition by 66%, while leaving the mean tonic conductance unchanged. These results demonstrate that a tonic GABAA receptor–mediated conductance can be recorded from dentate gyrus granule cells of adult rats in in vitro slice preparations. Furthermore, we have identified distinct pharmacological tools to selectively modify tonic and phasic inhibitions, allowing future studies to investigate their specific roles in neuronal function.


2022 ◽  
Author(s):  
Alma Rodenas-Ruano ◽  
Kaoutsar Nasrallah ◽  
Stefano Lutzu ◽  
Maryann Castillo ◽  
Pablo E. Castillo

The dentate gyrus is a key relay station that controls information transfer from the entorhinal cortex to the hippocampus proper. This process heavily relies on dendritic integration by dentate granule cells (GCs) of excitatory synaptic inputs from medial and lateral entorhinal cortex via medial and lateral perforant paths (MPP and LPP, respectively). N-methyl-D-aspartate receptors (NMDARs) can contribute significantly to the integrative properties of neurons. While early studies reported that excitatory inputs from entorhinal cortex onto GCs can undergo activity-dependent long-term plasticity of NMDAR-mediated transmission, the input-specificity of this plasticity along the dendritic axis remains unknown. Here, we examined the NMDAR plasticity rules at MPP-GC and LPP-GC synapses using physiologically relevant patterns of stimulation in acute rat hippocampal slices. We found that MPP-GC, but not LPP-GC synapses, expressed homosynaptic NMDAR-LTP. In addition, induction of NMDAR-LTP at MPP-GC synapses heterosynaptically potentiated distal LPP-GC NMDAR plasticity. The same stimulation protocol induced homosynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-LTP at MPP-GC but heterosynaptic AMPAR-LTD at distal LPP synapses, demonstrating that NMDAR and AMPAR are governed by different plasticity rules. Remarkably, heterosynaptic but not homosynaptic NMDAR-LTP required Ca2+ release from intracellular, ryanodine-dependent Ca2+ stores. Lastly, the induction and maintenance of both homo- and heterosynaptic NMDAR-LTP were blocked by GluN2D antagonism, suggesting the recruitment of GluN2D-containing receptors to the synapse. Our findings uncover a mechanism by which distinct inputs to the dentate gyrus may interact functionally and contribute to hippocampal-dependent memory formation.


1997 ◽  
Vol 78 (5) ◽  
pp. 2493-2502 ◽  
Author(s):  
Lori L. McMahon ◽  
Julie A. Kauer

McMahon, Lori L. and Julie A. Kauer. Hippocampal interneurons are excited via serotonin-gated ion channels. J. Neurophysiol. 78: 2493–2502, 1997. Serotonergic neurons of the median raphe nucleus heavily innervate hippocampal GABAergic interneurons located in stratum radiatum of area CA1, suggesting that this strong subcortical projection may modulate interneuron excitability. Using whole cell patch-clamp recording from interneurons in brain slices, we tested the effects of serotonin (5-HT) on the physiological properties of these interneurons. Serotonin produces a rapid inward current that persists when synaptic transmission is blocked by tetrodotoxin and cobalt, and is unaffected by ionotropic glutamate and γ-aminobutyric acid (GABA) receptor antagonists. The 5-HT–induced current was independent of G-protein activation. Pharmacological evidence indicates that 5-HT directly excites these interneurons through activation of 5-HT3 receptors. At membrane potentials negative to −55 mV, the current-voltage ( I-V) relationship of the 5-HT current displays a region of negative slope conductance. Therefore the response of interneurons to 5-HT strongly depends on membrane potential and increases greatly as cells are depolarized. Removal of extracellular calcium, but not magnesium, increases the amplitude of 5-HT–induced currents and removes the region of negative slope conductance, thereby linearizing the I-V relationship. The axons of 5-HT–responsive interneurons ramify widely within CA1; some of these interneurons also project to and arborize extensively in the dentate gyrus. The organization of these inhibitory connections strongly suggests that these cells regulate excitability of both CA1 pyramidal cells and dentate granule cells. As our results indicate that 5-HT may mediate fast excitatory synaptic transmission onto these interneurons, serotonergic inputs can simultaneously modulate the output of both hippocampus and dentate gyrus.


2005 ◽  
Vol 94 (1) ◽  
pp. 896-900 ◽  
Author(s):  
Paul S. Buckmaster

The predominant excitatory synaptic input to the hippocampus arises from entorhinal cortical axons that synapse with dentate granule cells, which in turn synapse with CA3 pyramidal cells.Thus two highly excitable brain areas—the entorhinal cortex and the CA3 field—are separated by dentate granule cells, which have been proposed to function as a gate or filter. However, unlike rats, primates have “dentate” CA3 pyramidal cells with an apical dendrite that extends into the molecular layer of the dentate gyrus, where they could receive strong, monosynaptic, excitatory synaptic input from the entorhinal cortex. To test this possibility, the dentate gyrus molecular layer was stimulated while intracellular recordings were obtained from CA3 pyramidal cells in hippocampal slices from neurologically normal macaque monkeys. Stimulus intensity of the outer molecular layer of the dentate gyrus was standardized by the threshold intensity for evoking a dentate gyrus field potential population spike. Recorded proximal CA3 pyramidal cells were labeled with biocytin, processed with diaminobenzidine for visualization, and classified according to their dendritic morphology. In response to stimulation of the dentate gyrus molecular layer, action potential thresholds were similar in proximal CA3 pyramidal cells with different dendritic morphologies. These findings do not support the hypothesis that dentate CA3 pyramidal cells receive stronger synaptic input from the entorhinal cortex than do other proximal CA3 pyramidal cells.


Sign in / Sign up

Export Citation Format

Share Document