Objective measurements on image quality of X-ray real-time imaging systems

1990 ◽  
Vol 23 (3) ◽  
pp. 166
2003 ◽  
Author(s):  
Norbert K. Strobel ◽  
Benno Heigl ◽  
Thomas M. Brunner ◽  
Oliver Schuetz ◽  
Matthias M. Mitschke ◽  
...  

Author(s):  
Jack L. Glover ◽  
Praful Gupta ◽  
Nicholas G. Paulter Jr. ◽  
Alan C. Bovik

Portable X-ray imaging systems are routinely used by bomb squads throughout the world to image the contents of suspicious packages and explosive devices. The images are used by bomb technicians to determine whether or not packages contain explosive devices or device components. In events of positive detection, the images are also used to understand device design and to devise countermeasures. The quality of the images is considered to be of primary importance by users and manufacturers of these systems, since it affects the ability of the users to analyze the images and to detect potential threats. As such, there exist national standards that set minimum acceptable image-quality levels for the performance of these imaging systems. An implicit assumption is that better image quality leads to better user identification of components in explosive devices and, therefore, better informed plans to render them safe. However, there is no previously published experimental work investigating this. Toward advancing progress in this direction, the authors developed the new NIST-LIVE X-ray improvised explosive device (IED) image-quality database. The database consists of: a set of pristine X-ray images of IEDs and benign objects; a larger set of distorted images of varying quality of the same objects; ground-truth IED component labels for all images; and human task-performance results locating and identifying the IED components. More than 40 trained U.S. bomb technicians were recruited to generate the human task-performance data. They use the database to show that identification probabilities for IED components are strongly correlated with image quality. They also show how the results relate to the image-quality metrics described in the current U.S. national standard for these systems, and how their results can be used to inform the development of baseline performance requirements. They expect these results to directly affect future revisions of the standard.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Karen Panetta ◽  
Arash Samani ◽  
Sos Agaian

Medical imaging systems often require image enhancement, such as improving the image contrast, to provide medical professionals with the best visual image quality. This helps in anomaly detection and diagnosis. Most enhancement algorithms are iterative processes that require many parameters be selected. Poor or nonoptimal parameter selection can have a negative effect on the enhancement process. In this paper, a quantitative metric for measuring the image quality is used to select the optimal operating parameters for the enhancement algorithms. A variety of measures evaluating the quality of an image enhancement will be presented along with each measure’s basis for analysis, namely, on image content and image attributes. We also provide guidelines for systematically choosing the proper measure of image quality for medical images.


2012 ◽  
Vol 452-453 ◽  
pp. 1513-1517
Author(s):  
Ai Guo Wang ◽  
Dong Lin Yang ◽  
Peng Zhao

x-ray real time imaging detection technology is a kind of important way for industrial nondestructive test. On the basis of basic theory on X-ray detection, The influence factors on x-ray real time imaging detection precision is analyzed in this article. Through analysis for the focus of X-ray source and the unintelligibility of geometric image, the relation between the optimal amplification multiple and the imaging quality is presented and the electric collimator to solve the influence on imaging quality from the scattered ray. The experimental result shows that the detection resolution ratio is up to 50PL/cm and the sensitivity is up to 1.4 % to solve the on-line real time detection for pore, inclusion and looseness and verify the application feasibility in the detection of cast aluminum parts for x-ray real time imaging detection technology.


1979 ◽  
Vol 18 (10) ◽  
pp. 1951-1957 ◽  
Author(s):  
Suguru Uchida ◽  
Yoshie Kodera ◽  
Hiroshi Inatsu
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document