Cell membrane ? Cytomatrix interactions in cell motility

1990 ◽  
Vol 14 ◽  
pp. 38
Author(s):  
M DEBRABANDER ◽  
R NUYDENS ◽  
H GEERTS ◽  
R NUYENS ◽  
J LEUNISSEN ◽  
...  
Keyword(s):  
Author(s):  
Hao Li ◽  
Jing Gao ◽  
Lei Cao ◽  
Xuan Xie ◽  
Jiahui Fan ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Hao Li ◽  
Jing Gao ◽  
Lei Cao ◽  
Xuan Xie ◽  
Jiahui Fan ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Hao Li ◽  
Jing Gao ◽  
Lei Cao ◽  
Xuan Xie ◽  
Jiahui Fan ◽  
...  
Keyword(s):  

Author(s):  
Hao Li ◽  
Jing Gao ◽  
Lei Cao ◽  
Xuan Xie ◽  
Jiahui Fan ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Elgin Korkmazhan ◽  
Alexander Robert Dunn

Protein linkages to filamentous (F)-actin provide the cell membrane with mechanical resiliency and give rise to intricate membrane architectures. However, the actin cytoskeleton is highly dynamic, and undergoes rapid changes in shape during cell motility and other processes. The molecular mechanisms that underlie the mechanically robust yet fluid connection between the membrane and actin cytoskeleton remain poorly understood. Here, we used a single-molecule optical trap assay to examine how the prototypical membrane-actin linker ezrin acts to anchor F-actin to the cell membrane. Remarkably, we find that ezrin forms a complex that slides along F-actin over micron distances while resisting mechanical detachment. The ubiquity of ezrin and analogous proteins suggests that sliding anchors such as ezrin may constitute an important but overlooked element in the construction of the actin cytoskeleton.


mBio ◽  
2020 ◽  
Vol 11 (4) ◽  
Author(s):  
Muhammad M. Hasan ◽  
José E. Teixeira ◽  
Ying-Wai Lam ◽  
Christopher D. Huston

ABSTRACT Invasion of the colon wall by Entamoeba histolytica during amoebic dysentery entails migration of trophozoites through tissue layers that are rich in extracellular matrix. Transcriptional silencing of the E. histolytica surface metalloprotease EhMSP-1 produces hyperadherent less-motile trophozoites that are deficient in forming invadosomes. Reversible protein phosphorylation is often implicated in regulation of cell motility and invadosome formation. To identify such intermediaries of the EhMSP-1-silenced phenotype, here we compared the phosphoproteomes of EhMSP-1-silenced and vector control trophozoites by using quantitative tandem mass spectrometry-based proteomics. Six proteins were found to be differentially phosphorylated in EhMSP-1-silenced and control cells, including EhCoactosin, a member of the ADF/cofilin family of actin-binding proteins, which was more frequently phosphorylated at serine 147. Regulated overexpression of wild-type, phosphomimetic, and nonphosphorylatable EhCoactosin variants was used to test if phosphorylation functions in control of E. histolytica actin dynamics. Each of the overexpressed proteins colocalized with F-actin during E. histolytica phagocytosis. Nonetheless, trophozoites overexpressing an EhCoactosin phosphomimetic mutant formed more and poorly coordinated cell membrane protrusions compared to those in control or cells expressing a nonphosphorylatable mutant, while trophozoites overexpressing nonphosphorylatable EhCoactosin were significantly more motile within a model of mammalian extracellular matrix. Therefore, although EhCoactosin’s actin-binding ability appeared unaffected by phosphorylation, EhCoactosin phosphorylation helps to regulate amoebic motility. These data help to understand the mechanisms underlying altered adherence and motility in EhMSP-1-silenced trophozoites and lay the groundwork for identifying kinases and phosphatases critical for control of amoebic invasiveness. IMPORTANCE Invasive amoebiasis, caused by the intestinal parasite Entamoeba histolytica, causes life-threatening diarrhea and liver abscesses, but, for unknown reasons, only approximately 10% of E. histolytica infections become symptomatic. A key requirement of invasion is the ability of the parasite to migrate through tissue layers. Here, we systematically looked for differences in protein phosphorylation between control parasites and a previously identified hyperadherent E. histolytica cell line that has reduced motility. We identified EhCoactosin, an actin-binding protein not previously known to be phosphoregulated, as one of the differentially phosphorylated proteins in E. histolytica and demonstrated that EhCoactosin phosphorylation functions in control of cell membrane dynamics and amoebic motility. This and the additional differentially phosphorylated proteins reported lay the groundwork for identifying kinases and phosphatases that regulate tissue invasiveness.


1989 ◽  
Vol 67 (6) ◽  
pp. 297-300 ◽  
Author(s):  
Dominique St-Onge ◽  
Claude Gicquaud

Actin is a protein component of the cystoskeleton and is involved in cell motility. It is believed generally that actin filaments are attached to the cell membrane through an interaction with membranous actin-binding proteins. By using an in vitro system composed of liposomes and actin, we have shown that actin may also interact directly with the phospholipids of the membrane. Actin deposited at the surface of the liposome is organized in two regular patterns: a paracrystalline sheet of parallel filaments in register, or a netlike organization. These interactions of actin with membrane lipids occur only in the presence of millimolar concentrations of Mg2+. These results suggest that the interaction of the cytoskeleton with the membrane involves, at least in part, a direct association of actin with phospholipids.Key words: actin, membrane, liposome.


2019 ◽  
Author(s):  
Douglas A Gibson ◽  
Arantza Esnal-Zufiaurre ◽  
Cristina Bajo-Santos ◽  
Frances Collins ◽  
Hilary OD Critchley ◽  
...  

AbstractStudy questionDoes the oestrogen receptor isoform, ER46, contribute to regulation of endometrial function?Summary answerER46 is expressed in endometrial tissues during the proliferative and secretory phases and is the predominant ERα isoform in first trimester decidua. ER46 is abundantly expressed in uterine NK (uNK) cells and localised to the cell membrane. Activation of ER46 regulates the function of human uNK cells by increasing cell motility.What is known alreadyOestrogens acting via their cognate receptors are essential regulators of endometrial function and play key roles in establishment of pregnancy. ER46 is a 46kDa truncated isoform of full length ERα (ER66, encoded by ESR1) that contains both ligand and DNA binding domains. Expression of ER46 in human endometrium has not been investigated previously. ER46 is located at the cell membrane of peripheral blood leukocytes and mediates rapid responses to oestrogens. UNK cells are a phenotypically distinct (CD56brightCD16-) population of tissue-resident immune cells that regulate vascular remodelling within the endometrium and decidua. We have shown that oestrogens stimulate rapid increases in uNK cell motility. Previous characterisation of uNK cells suggests they are ER66-negative but expression of ER46 has not been characterised. We hypothesise that uNK cells express ER46 and that rapid responses to oestrogens are mediated via this receptor.Study design, size, durationThis laboratory-based study used primary human endometrial (n=24) and decidual tissue biopsies (n=30) as well as uNK cells which were freshly isolated from first trimester human decidua (n=18).Participants/materials, setting, methodsPrimary human endometrial and first trimester decidual tissue biopsies were collected using methods approved by the local institutional ethics committee (LREC/05/51104/12 and LREC/10/51402/59). The expression of oestrogen receptors (ER66, ER46 and ERβ) was assessed by qPCR, western blot and immunohistochemistry. Uterine Natural Killer (uNK) cells were isolated from first trimester human decidua by magnetic bead sorting. Cell motility of uNK cells was measured by live cell imaging: cells were treated with oestradiol (E2)-BSA (10nM equivalent), the ERβ-selective agonist 2,3-bis (4-hydroxyphenyl)-propionitrile (DPN; 10nM) or vehicle control (DMSO).Main results and the role of chanceER46 was detected in proliferative and secretory phase tissues and was the predominant ERα isoform in first trimester decidua samples. Immunohistochemistry revealed ER46 was co-localised with ER66 in cell nuclei during the proliferative phase but detected in both the cytoplasm and cell membrane of stromal cells in the secretory phase and in decidua. Triple immunofluorescence staining of decidua tissues identified expression of ER46 in the cell membrane of CD56-positive uNK cells which were otherwise ER66-negative. Profiling of isolated uNK cells confirmed expression ER46 and localised ER46 protein to the cell membrane. Functional analysis of isolated uNK cells using live cell imaging demonstrated that activation of ER46 with E2-BSA significantly increased uNK cell motility.Limitations, reasons for cautionExpression patterns in endometrial tissue was only determined using samples from proliferative and secretory phases. Assessment of first trimester decidua samples was from a range of gestational ages which may have precluded insights into gestation specific changes in these tissues. Our results are based on in vitro responses of primary human cells and we cannot be certain that similar mechanisms occur in situ.Wider implications of the findingsE2 is an essential regulator of reproductive competence. This study provides the first evidence for expression of ER46 in human endometrium and decidua of early pregnancy. We describe a mechanism for regulating the function of human uNK cells via expression of ER46 and demonstrate that selective targeting with E2-BSA regulates uNK cell motility. These novel findings identify a role for ER46 in human endometrium and provide unique insight into the importance of membrane-initiated signalling in modulating the impact of E2 on uNK cell function in women.Study funding/competing interest(s)These studies were supported by MRC Programme Grants G1100356/1 and MR/N024524/1 to PTKS. HODC was supported by MRC grant G1002033.


2020 ◽  
Vol 35 (3) ◽  
pp. 641-651 ◽  
Author(s):  
Douglas A Gibson ◽  
Arantza Esnal-Zufiaurre ◽  
Cristina Bajo-Santos ◽  
Frances Collins ◽  
Hilary O D Critchley ◽  
...  

Abstract STUDY QUESTION Does the oestrogen receptor isoform, ER46, contribute to regulation of endometrial function? SUMMARY ANSWER ER46 is expressed in endometrial tissues, is the predominant ER isoform in first trimester decidua and is localised to the cell membrane of uterine natural killer (uNK) cells where activation of ER46 increases cell motility. WHAT IS KNOWN ALREADY Oestrogens acting via their cognate receptors are essential regulators of endometrial function and play key roles in establishment of pregnancy. ER46 is a 46-kDa truncated isoform of full length ERα (ER66, encoded by ESR1) that contains both ligand- and DNA-binding domains. Expression of ER46 in the human endometrium has not been investigated previously. ER46 is located at the cell membrane of peripheral blood leukocytes and mediates rapid responses to oestrogens. uNK cells are a phenotypically distinct (CD56brightCD16−) population of tissue-resident immune cells that regulate vascular remodelling within the endometrium and decidua. We have shown that oestrogens stimulate rapid increases in uNK cell motility. Previous characterisation of uNK cells suggests they are ER66-negative, but expression of ER46 has not been characterised. We hypothesise that uNK cells express ER46 and that rapid responses to oestrogens are mediated via this receptor. STUDY DESIGN, SIZE, DURATION This laboratory-based study used primary human endometrial (n = 24) and decidual tissue biopsies (n = 30) as well as uNK cells which were freshly isolated from first trimester human decidua (n = 18). PARTICIPANTS/MATERIALS, SETTING, METHODS Primary human endometrial and first trimester decidual tissue biopsies were collected using methods approved by the local institutional ethics committee (LREC/05/51104/12 and LREC/10/51402/59). The expression of ERs (ER66, ER46 and ERβ) was assessed by quantitative PCR, western blot and immunohistochemistry. uNK cells were isolated from first-trimester human decidua by magnetic bead sorting. Cell motility of uNK cells was measured by live cell imaging: cells were treated with 17β-oestradiol conjugated to bovine serum albumin (E2-BSA, 10 nM equivalent), the ERβ-selective agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN; 10 nM) or dimethylsulphoxide vehicle control. MAIN RESULTS AND THE ROLE OF CHANCE ER46 was detected in proliferative and secretory phase tissues by western blot and was the predominant ER isoform in first-trimester decidua samples. Immunohistochemistry revealed that ER46 was co-localised with ER66 in cell nuclei during the proliferative phase but detected in both the cytoplasm and cell membrane of stromal cells in the secretory phase and in decidua. Triple immunofluorescence staining of decidua tissues identified expression of ER46 in the cell membrane of CD56-positive uNK cells which were otherwise ER66-negative. Profiling of isolated uNK cells confirmed expression of ER46 by quantitative PCR and western blot and localised ER46 protein to the cell membrane by immunocytochemistry. Functional analysis of isolated uNK cells using live cell imaging demonstrated that activation of ER46 with E2-BSA significantly increased uNK cell motility. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Expression pattern in endometrial tissue was only determined using samples from proliferative and secretory phases. Assessment of first trimester decidua samples was from a range of gestational ages, which may have precluded insights into gestation-specific changes in these tissues. Our results are based on in vitro responses of primary human cells and we cannot be certain that similar mechanisms occur in situ. WIDER IMPLICATIONS OF THE FINDINGS E2 is an essential regulator of reproductive competence. This study provides the first evidence for expression of ER46 in the human endometrium and decidua of early pregnancy. We describe a mechanism for regulating the function of human uNK cells via expression of ER46 and demonstrate that selective targeting with E2-BSA regulates uNK cell motility. These novel findings identify a role for ER46 in the human endometrium and provide unique insight into the importance of membrane-initiated signalling in modulating the impact of E2 on uNK cell function in women. Given the importance of uNK cells to regulating vascular remodelling in early pregnancy and the potential for selective targeting of ER46, this may be an attractive future therapeutic target in the treatment of reproductive disorders. STUDY FUNDING/COMPETING INTEREST(S) These studies were supported by Medical Research Council (MRC) Programme Grants G1100356/1 and MR/N024524/1 to PTKS. H.O.D.C. was supported by MRC grant G1002033. The authors declare no competing interests related to the published work.


2012 ◽  
Vol 9 (76) ◽  
pp. 3027-3044 ◽  
Author(s):  
Charles M. Elliott ◽  
Björn Stinner ◽  
Chandrasekhar Venkataraman

We present a mathematical and a computational framework for the modelling of cell motility. The cell membrane is represented by an evolving surface, with the movement of the cell determined by the interaction of various forces that act normal to the surface. We consider external forces such as those that may arise owing to inhomogeneities in the medium and a pressure that constrains the enclosed volume, as well as internal forces that arise from the reaction of the cells' surface to stretching and bending. We also consider a protrusive force associated with a reaction–diffusion system (RDS) posed on the cell membrane, with cell polarization modelled by this surface RDS. The computational method is based on an evolving surface finite-element method. The general method can account for the large deformations that arise in cell motility and allows the simulation of cell migration in three dimensions. We illustrate applications of the proposed modelling framework and numerical method by reporting on numerical simulations of a model for eukaryotic chemotaxis and a model for the persistent movement of keratocytes in two and three space dimensions. Movies of the simulated cells can be obtained from http://homepages.warwick.ac.uk/∼maskae/CV_Warwick/Chemotaxis.html .


Sign in / Sign up

Export Citation Format

Share Document