A simple method for defining target volumes on orthogonal simulation films using magnetic resonance images

Author(s):  
Joel W. Goldwein ◽  
Robert Zimmerman
2018 ◽  
Vol 100 (5) ◽  
pp. 409-412 ◽  
Author(s):  
AR Kaye ◽  
W Marlow ◽  
G Williams ◽  
AP Molloy ◽  
LW Mason

Introduction During ankle fracture fixation, iatrogenic trauma to retro fibula structures can result in morbidity and reoperation. We describe a safe zone for lag screw insertion. Materials and methods This study was completed in three sections. We identified the average entry and exit points for the lag screw using 45 Weber B ankle fractures identified from our trauma database. We then analysed 26 sequentially presented ankle magnetic resonance images, concentrating on axial sections at 4, 8, 12 and 16 mm above the ankle joint. Finally, we used 63 sequentially performed magnetic resonance scans to confirm the safe zone from these consistent structures. Results The typical lag screw exit point was 14.2 mm above the ankle joint (95% confidence Interval 11.3–17.1 mm). A safe zone trajectory occurred between 31 and 45 degrees taken from the anterior aspect of the flat fibular surface at this level. The obvious palpable landmark to direct screw trajectory and avoid ‘at risk’ structures was found to be the medial edge of the Achilles tendon. Our final dataset confirmed in 63 scans, the medial aspect of the Achilles tendon to be a consistent safe zone with a minimum distance of at risk structures of 4 mm. Conclusion This simple method of directing the fibula lag screw towards the palpable medial edge of the Achilles tendon is practical, easy to teach and directs the screw on a safe trajectory away from the most commonly injured structures around the back of the fibula.


Author(s):  
M.J. Hennessy ◽  
E. Kwok

Much progress in nuclear magnetic resonance microscope has been made in the last few years as a result of improved instrumentation and techniques being made available through basic research in magnetic resonance imaging (MRI) technologies for medicine. Nuclear magnetic resonance (NMR) was first observed in the hydrogen nucleus in water by Bloch, Purcell and Pound over 40 years ago. Today, in medicine, virtually all commercial MRI scans are made of water bound in tissue. This is also true for NMR microscopy, which has focussed mainly on biological applications. The reason water is the favored molecule for NMR is because water is,the most abundant molecule in biology. It is also the most NMR sensitive having the largest nuclear magnetic moment and having reasonable room temperature relaxation times (from 10 ms to 3 sec). The contrast seen in magnetic resonance images is due mostly to distribution of water relaxation times in sample which are extremely sensitive to the local environment.


Author(s):  
Alan P. Koretsky ◽  
Afonso Costa e Silva ◽  
Yi-Jen Lin

Magnetic resonance imaging (MRI) has become established as an important imaging modality for the clinical management of disease. This is primarily due to the great tissue contrast inherent in magnetic resonance images of normal and diseased organs. Due to the wide availability of high field magnets and the ability to generate large and rapidly switched magnetic field gradients there is growing interest in applying high resolution MRI to obtain microscopic information. This symposium on MRI microscopy highlights new developments that are leading to increased resolution. The application of high resolution MRI to significant problems in developmental biology and cancer biology will illustrate the potential of these techniques.In combination with a growing interest in obtaining high resolution MRI there is also a growing interest in obtaining functional information from MRI. The great success of MRI in clinical applications is due to the inherent contrast obtained from different tissues leading to anatomical information.


2004 ◽  
Vol 30 (2) ◽  
pp. 315-326 ◽  
Author(s):  
Lori Marino ◽  
Keith Sudheimer ◽  
D. Ann Pabst ◽  
William A. Mclellan ◽  
Saima Arshad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document