Non-equilibrium statistical operator approach to relaxation processes in nuclear reactions

1976 ◽  
Vol 61 (5) ◽  
pp. 427-429 ◽  
Author(s):  
P. Mädler ◽  
R. Reif ◽  
G. Röpke ◽  
H.-E. Zschau

A new qualitative conception of the detonation mechanism in condensed explosives has been developed on the basis of experimental and numerical modelling data. According to the conception the mechanism consists of two stages: non-equilibrium and equilibrium. The mechanism regularities are explosive characteristics and they do not depend on explosive charge structure (particle size, nature of filler in the pores, explosive state, liquid or solid, and so on). The tremendous rate of loading inside the detonation wave shock discontinuity zone ( ca. 10 -13 s) is responsible for the origin of the non-equilibrium stage. For this reason, the kinetic part of the shock compression energy is initially absorbed only by the translational degrees of freedom of the explosive molecules. It involves the appearance of extremely high translational temperatures for the polyatomic molecules. In the course of the translational-vibrational relaxation processes (that is, during the first non-equilibrium stage of ca. 10 -10 s time duration) the most rapidly excited vibrational degrees of freedom can accumulate surplus energy, and the corresponding bonds decompose faster than behind the front at the equilibrium stage. In addition to this process, the explosive molecules become electronically excited and thermal ionization becomes possible inside the translational temperature overheat zone. The molecules thermal decomposition as well as their electronic excitation and thermal ionization result in some active particles (radicals, ions) being created. The active particles and excited molecules govern the explosive detonation decomposition process behind the shock front during the second equilibrium stage. The activation energy is usually low, so that during this stage the decomposition proceeds extremely rapidly. Therefore the experimentally observed dependence of the detonation decomposition time for condensed explosives is rather weak.


2014 ◽  
Vol 141 (6) ◽  
pp. 065102 ◽  
Author(s):  
Luciana Renata de Oliveira ◽  
Armando Bazzani ◽  
Enrico Giampieri ◽  
Gastone C. Castellani

Particles ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 212-229 ◽  
Author(s):  
Arus Harutyunyan ◽  
Armen Sedrakian

We provide a discussion of the bulk viscosity of two-flavor quark plasma, described by the Nambu–Jona-Lasinio model, within the framework of Kubo-Zubarev formalism. This discussion, which is complementary to our earlier study, contains a new, detailed derivation of the bulk viscosity in the case of multiple conserved charges. We also provide some numerical details of the computation of the bulk viscosity close to the Mott transition line, where the dissipation is dominated by decays of mesons into quarks and their inverse processes. We close with a summary of our current understanding of this quantity, which stresses the importance of loop resummation for obtaining the qualitatively correct result near the Mott line.


2009 ◽  
Vol 1215 ◽  
Author(s):  
Laurence Luneville ◽  
David Simeone ◽  
Gianguido Baldinozzi ◽  
Dominique Gosset ◽  
yves serruys

AbstractEven if the Binary Collision Approximation does not take into account relaxation processes at the end of the displacement cascade, the amount of displaced atoms calculated within this framework can be used to compare damages induced by different facilities like pressurized water reactors (PWR), fast breeder reactors (FBR), high temperature reactors (HTR) and ion beam facilities on a defined material. In this paper, a formalism is presented to evaluate the displacement cross-sections pointing out the effect of the anisotropy of nuclear reactions. From this formalism, the impact of fast neutrons (with a kinetic energy En superior to 1 MeV) is accurately described. This point allows calculating accurately the displacement per atom rates as well as primary and weighted recoil spectra. Such spectra provide useful information to select masses and energies of ions to perform realistic experiments in ion beam facilities.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012018
Author(s):  
E Y Kostina ◽  
E V Khusaenova ◽  
A O Andreev ◽  
R Hudec ◽  
Y A Nefedyev

Abstract Natural processes existing in complex objects of inanimate and living matter are of a stochastic and non-equilibrium nature. The main problem in the study of such systems is to determine the value of entropy as a quantitative measure of the uncertainty and systematicity of states of dynamical systems in different phase spaces. This paper presents a new method for analyzing active processes of solar dynamics using the theory of non-Markov random discrete processes (NMRDP). The NMRDP theory is based on the Zwanzig-Mori kinetic equations in a finite-difference discrete interpretation. This is consistent with the concept of non-equilibrium statistical condensed matter physics. Qualitative information about the set of behavioral patterns, relaxation processes, dynamic characteristics and internal properties of solar activity can be obtained using NMRDP modeling by the author’s methodological approach developed in this work. This approach is focused on the analysis of spectral frequency memory functions, dynamic orthogonal parameters, phase transformations, relaxation and kinetic processes and self-organization in complex physical systems. In this work, for modeling NMRDP, the author’s software package APSASA (automated program for solar activity stochastic analysis) was used, which also allows predicting the trend of solar activity for a limited period of time. Modeling NMRDP associated with active processes occurring on the Sun made it possible to build a mathematical model with whose help it is possible to study the regularities and randomness of stochastic processes, as well as to reveal the patterns arising from the recurrence and periodicity of solar activity.


Sign in / Sign up

Export Citation Format

Share Document