Higher spin, W and gauge symmetries in two-dimensional sigma models

1992 ◽  
Vol 277 (4) ◽  
pp. 447-452 ◽  
Author(s):  
George Papadopoulos
2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Ilka Brunner ◽  
Fabian Klos ◽  
Daniel Roggenkamp

Abstract In this paper, we construct defects (domain walls) that connect different phases of two-dimensional gauged linear sigma models (GLSMs), as well as defects that embed those phases into the GLSMs. Via their action on boundary conditions these defects give rise to functors between the D-brane categories, which respectively describe the transport of D-branes between different phases, and embed the D-brane categories of the phases into the category of D-branes of the GLSMs.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Athanasios Chatzistavrakidis ◽  
Grgur Šimunić

Abstract We study aspects of two-dimensional nonlinear sigma models with Wess-Zumino term corresponding to a nonclosed 3-form, which may arise upon dimensional reduction in the target space. Our goal in this paper is twofold. In a first part, we investigate the conditions for consistent gauging of sigma models in the presence of a nonclosed 3-form. In the Abelian case, we find that the target of the gauged theory has the structure of a contact Courant algebroid, twisted by a 3-form and two 2-forms. Gauge invariance constrains the theory to (small) Dirac structures of the contact Courant algebroid. In the non-Abelian case, we draw a similar parallel between the gauged sigma model and certain transitive Courant algebroids and their corresponding Dirac structures. In the second part of the paper, we study two-dimensional sigma models related to Jacobi structures. The latter generalise Poisson and contact geometry in the presence of an additional vector field. We demonstrate that one can construct a sigma model whose gauge symmetry is controlled by a Jacobi structure, and moreover we twist the model by a 3-form. This construction is then the analogue of WZW-Poisson structures for Jacobi manifolds.


2021 ◽  
Vol 111 (6) ◽  
Author(s):  
Dmitri Bykov ◽  
Dieter Lüst

AbstractIt is shown that the Pohlmeyer map of a $$\sigma $$ σ -model with a toric two-dimensional target space naturally leads to the ‘sausage’ metric. We then elaborate the trigonometric deformation of the $$\mathbb {CP}^{n-1}$$ CP n - 1 -model, proving that its T-dual metric is Kähler and solves the Ricci flow equation. Finally, we discuss a relation between flag manifold $$\sigma $$ σ -models and Toda field theories.


1989 ◽  
Vol 314 (2) ◽  
pp. 439-466 ◽  
Author(s):  
A.C. Davis ◽  
J.A. Gracey ◽  
A.J. MacFarlane ◽  
M.G. Mitchard

Author(s):  
Sergei L. Lukyanov ◽  
Alexander B. Zamolodchikov

This is a two-part course about the integrability of two-dimensional non-linear sigma models (2D NLSM). In the first part general aspects of classical integrability are discussed, based on the O(3) and O(4) sigma-models and the field theories related to them. The second part is devoted to the quantum 2D NLSM. Among the topics considered are: basic facts of conformal field theory, zero-curvature representations, integrals of motion, one-loop renormalizability of 2D NLSM, integrable structures in the so-called cigar and sausage models, and their RG flows. The text contains a large number of exercises of varying levels of difficulty.


Sign in / Sign up

Export Citation Format

Share Document