scholarly journals Gauged sigma-models with nonclosed 3-form and twisted Jacobi structures

2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Athanasios Chatzistavrakidis ◽  
Grgur Šimunić

Abstract We study aspects of two-dimensional nonlinear sigma models with Wess-Zumino term corresponding to a nonclosed 3-form, which may arise upon dimensional reduction in the target space. Our goal in this paper is twofold. In a first part, we investigate the conditions for consistent gauging of sigma models in the presence of a nonclosed 3-form. In the Abelian case, we find that the target of the gauged theory has the structure of a contact Courant algebroid, twisted by a 3-form and two 2-forms. Gauge invariance constrains the theory to (small) Dirac structures of the contact Courant algebroid. In the non-Abelian case, we draw a similar parallel between the gauged sigma model and certain transitive Courant algebroids and their corresponding Dirac structures. In the second part of the paper, we study two-dimensional sigma models related to Jacobi structures. The latter generalise Poisson and contact geometry in the presence of an additional vector field. We demonstrate that one can construct a sigma model whose gauge symmetry is controlled by a Jacobi structure, and moreover we twist the model by a 3-form. This construction is then the analogue of WZW-Poisson structures for Jacobi manifolds.

2004 ◽  
Vol 16 (05) ◽  
pp. 603-628 ◽  
Author(s):  
DOUG PICKRELL

In this note, we use geometric arguments to derive a possible form for the radial part of the "zero-mode Hamiltonian" for the two-dimensional sigma model with target space S3, or more generally a compact simply connected Lie group.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Jin Chen ◽  
Chao-Hsiang Sheu ◽  
Mikhail Shifman ◽  
Gianni Tallarita ◽  
Alexei Yung

Abstract We study two-dimensional weighted $$ \mathcal{N} $$ N = (2) supersymmetric ℂℙ models with the goal of exploring their infrared (IR) limit. 𝕎ℂℙ(N,$$ \tilde{N} $$ N ˜ ) are simplified versions of world-sheet theories on non-Abelian strings in four-dimensional $$ \mathcal{N} $$ N = 2 QCD. In the gauged linear sigma model (GLSM) formulation, 𝕎ℂℙ(N,$$ \tilde{N} $$ N ˜ ) has N charges +1 and $$ \tilde{N} $$ N ˜ charges −1 fields. As well-known, at $$ \tilde{N} $$ N ˜ = N this GLSM is conformal. Its target space is believed to be a non-compact Calabi-Yau manifold. We mostly focus on the N = 2 case, then the Calabi-Yau space is a conifold. On the other hand, in the non-linear sigma model (NLSM) formulation the model has ultra-violet logarithms and does not look conformal. Moreover, its metric is not Ricci-flat. We address this puzzle by studying the renormalization group (RG) flow of the model. We show that the metric of NLSM becomes Ricci-flat in the IR. Moreover, it tends to the known metric of the resolved conifold. We also study a close relative of the 𝕎ℂℙ model — the so called zn model — which in actuality represents the world sheet theory on a non-Abelian semilocal string and show that this zn model has similar RG properties.


1999 ◽  
Vol 14 (14) ◽  
pp. 2257-2271 ◽  
Author(s):  
KASPER OLSEN ◽  
RICARDO SCHIAPPA

We consider target space duality transformations for heterotic sigma models and strings away from renormalization group fixed points. By imposing certain consistency requirements between the T-duality symmetry and renormalization group flows, the one-loop gauge beta function is uniquely determined, without any diagram calculations. Classical T-duality symmetry is a valid quantum symmetry of the heterotic sigma model, severely constraining its renormalization flows at this one-loop order. The issue of heterotic anomalies and their cancellation is addressed from this duality constraining viewpoint.


2021 ◽  
Vol 111 (6) ◽  
Author(s):  
Dmitri Bykov ◽  
Dieter Lüst

AbstractIt is shown that the Pohlmeyer map of a $$\sigma $$ σ -model with a toric two-dimensional target space naturally leads to the ‘sausage’ metric. We then elaborate the trigonometric deformation of the $$\mathbb {CP}^{n-1}$$ CP n - 1 -model, proving that its T-dual metric is Kähler and solves the Ricci flow equation. Finally, we discuss a relation between flag manifold $$\sigma $$ σ -models and Toda field theories.


1997 ◽  
Vol 12 (02) ◽  
pp. 419-436 ◽  
Author(s):  
L. E. Saltini ◽  
A. Zadra

We propose a graphic method to derive the classical algebra (Dirac brackets) of nonlocal conserved charges in the two-dimensional supersymmetric nonlinear O(N) sigma model. As in the purely bosonic theory we find a cubic Yangian algebra. We also consider the extension of graphic methods to other integrable theories.


2004 ◽  
Vol 19 (16) ◽  
pp. 2713-2720
Author(s):  
D. G. C. McKEON

The nonlinear sigma model with a two-dimensional basis space and an n-dimensional target space is considered. Two different basis spaces are considered; the first is an 0(2)×0(2) subspace of the 0(2,2) projective space related to the Minkowski basis space, and the other is a toroidal space embedded into three-dimensional Euclidean space, characterized by radii R and r. The target space is taken to be an arbitrarily curved Riemannian manifold. One-loop dependence on the renormalization induced scale μ is shown in the toroidal basis space to be the same as in a flat or spherical basis space.


2016 ◽  
Vol 31 (27) ◽  
pp. 1650147 ◽  
Author(s):  
Jin Chen ◽  
Xiaoyi Cui ◽  
Mikhail Shifman ◽  
Arkady Vainshtein

The two-dimensional minimal supersymmetric sigma models with homogeneous target spaces [Formula: see text] and chiral fermions of the same chirality are revisited. In particular, we look into the isometry anomalies in [Formula: see text] and [Formula: see text] models. These anomalies are generated by fermion loop diagrams which we explicitly calculate. In the case of [Formula: see text] sigma models the first Pontryagin class vanishes, so there is no global obstruction for the minimal [Formula: see text] supersymmetrization of these models. We show that at the local level isometries in these models can be made anomaly free by specifying the counterterms explicitly. Thus, there are no obstructions to quantizing the minimal [Formula: see text] models with the [Formula: see text] target space while preserving the isometries. This also includes [Formula: see text] (equivalent to [Formula: see text]) which is an exceptional case from the [Formula: see text] series. For other [Formula: see text] models, the isometry anomalies cannot be rescued even locally, this leads us to a discussion on the relation between the geometric and gauged formulations of the [Formula: see text] models to compare the original of different anomalies. A dual formalism of [Formula: see text] model is also given, in order to show the consistency of our isometry anomaly analysis in different formalisms. The concrete counterterms to be added, however, will be formalism dependent.


2020 ◽  
Vol 23 (3) ◽  
Author(s):  
M. Jotz Lean

Abstract This paper reformulates Li-Bland’s definition for LA-Courant algebroids, or Poisson Lie 2-algebroids, in terms of split Lie 2-algebroids and self-dual 2-representations. This definition generalises in a precise sense the characterisation of (decomposed) double Lie algebroids via matched pairs of 2-representations. We use the known geometric examples of LA-Courant algebroids in order to provide new examples of Poisson Lie 2-algebroids, and we explain in this general context Roytenberg’s equivalence of Courant algebroids with symplectic Lie 2-algebroids. We study further the core of an LA-Courant algebroid and we prove that it carries an induced degenerate Courant algebroid structure. In the nondegenerate case, this gives a new construction of a Courant algebroid from the corresponding symplectic Lie 2-algebroid. Finally we completely characterise VB-Dirac and LA-Dirac structures via simpler objects, that we compare to Li-Bland’s pseudo-Dirac structures.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1205
Author(s):  
Francesco Bascone ◽  
Franco Pezzella ◽  
Patrizia Vitale

The geometric properties of sigma models with target space a Jacobi manifold are investigated. In their basic formulation, these are topological field theories—recently introduced by the authors—which share and generalise relevant features of Poisson sigma models, such as gauge invariance under diffeomorphisms and finite dimension of the reduced phase space. After reviewing the main novelties and peculiarities of these models, we perform a detailed analysis of constraints and ensuing gauge symmetries in the Hamiltonian approach. Contact manifolds as well as locally conformal symplectic manifolds are discussed, as main instances of Jacobi manifolds.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Osamu Fukushima ◽  
Jun-ichi Sakamoto ◽  
Kentaroh Yoshida

Abstract Recently, a variety of deformed T1,1 manifolds, with which 2D non-linear sigma models (NLSMs) are classically integrable, have been presented by Arutyunov, Bassi and Lacroix (ABL) [46]. We refer to the NLSMs with the integrable deformed T1,1 as the ABL model for brevity. Motivated by this progress, we consider deriving the ABL model from a 4D Chern-Simons (CS) theory with a meromorphic one-form with four double poles and six simple zeros. We specify boundary conditions in the CS theory that give rise to the ABL model and derive the sigma-model background with target-space metric and anti-symmetric two-form. Finally, we present two simple examples 1) an anisotropic T1,1 model and 2) a G/H λ-model. The latter one can be seen as a one-parameter deformation of the Guadagnini-Martellini-Mintchev model.


Sign in / Sign up

Export Citation Format

Share Document