Path integral fermionization of two-dimensional sigma -models related to the homogeneous ones

1991 ◽  
Vol 24 (8) ◽  
pp. L395-L398
Author(s):  
A V Bratchikov
2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Fridrich Valach ◽  
Donald R. Youmans

Abstract We give an interpretation of the holographic correspondence between two-dimensional BF theory on the punctured disk with gauge group PSL(2, ℝ) and Schwarzian quantum mechanics in terms of a Drinfeld-Sokolov reduction. The latter, in turn, is equivalent to the presence of certain edge states imposing a first class constraint on the model. The constrained path integral localizes over exceptional Virasoro coadjoint orbits. The reduced theory is governed by the Schwarzian action functional generating a Hamiltonian S1-action on the orbits. The partition function is given by a sum over topological sectors (corresponding to the exceptional orbits), each of which is computed by a formal Duistermaat-Heckman integral.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Ilka Brunner ◽  
Fabian Klos ◽  
Daniel Roggenkamp

Abstract In this paper, we construct defects (domain walls) that connect different phases of two-dimensional gauged linear sigma models (GLSMs), as well as defects that embed those phases into the GLSMs. Via their action on boundary conditions these defects give rise to functors between the D-brane categories, which respectively describe the transport of D-branes between different phases, and embed the D-brane categories of the phases into the category of D-branes of the GLSMs.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Athanasios Chatzistavrakidis ◽  
Grgur Šimunić

Abstract We study aspects of two-dimensional nonlinear sigma models with Wess-Zumino term corresponding to a nonclosed 3-form, which may arise upon dimensional reduction in the target space. Our goal in this paper is twofold. In a first part, we investigate the conditions for consistent gauging of sigma models in the presence of a nonclosed 3-form. In the Abelian case, we find that the target of the gauged theory has the structure of a contact Courant algebroid, twisted by a 3-form and two 2-forms. Gauge invariance constrains the theory to (small) Dirac structures of the contact Courant algebroid. In the non-Abelian case, we draw a similar parallel between the gauged sigma model and certain transitive Courant algebroids and their corresponding Dirac structures. In the second part of the paper, we study two-dimensional sigma models related to Jacobi structures. The latter generalise Poisson and contact geometry in the presence of an additional vector field. We demonstrate that one can construct a sigma model whose gauge symmetry is controlled by a Jacobi structure, and moreover we twist the model by a 3-form. This construction is then the analogue of WZW-Poisson structures for Jacobi manifolds.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Yiming Chen ◽  
Victor Gorbenko ◽  
Juan Maldacena

Abstract We consider two dimensional CFT states that are produced by a gravitational path integral.As a first case, we consider a state produced by Euclidean AdS2 evolution followed by flat space evolution. We use the fine grained entropy formula to explore the nature of the state. We find that the naive hyperbolic space geometry leads to a paradox. This is solved if we include a geometry that connects the bra with the ket, a bra-ket wormhole. The semiclassical Lorentzian interpretation leads to CFT state entangled with an expanding and collapsing Friedmann cosmology.As a second case, we consider a state produced by Lorentzian dS2 evolution, again followed by flat space evolution. The most naive geometry also leads to a similar paradox. We explore several possible bra-ket wormholes. The most obvious one leads to a badly divergent temperature. The most promising one also leads to a divergent temperature but by making a projection onto low energy states we find that it has features that look similar to the previous Euclidean case. In particular, the maximum entropy of an interval in the future is set by the de Sitter entropy.


2021 ◽  
Vol 111 (6) ◽  
Author(s):  
Dmitri Bykov ◽  
Dieter Lüst

AbstractIt is shown that the Pohlmeyer map of a $$\sigma $$ σ -model with a toric two-dimensional target space naturally leads to the ‘sausage’ metric. We then elaborate the trigonometric deformation of the $$\mathbb {CP}^{n-1}$$ CP n - 1 -model, proving that its T-dual metric is Kähler and solves the Ricci flow equation. Finally, we discuss a relation between flag manifold $$\sigma $$ σ -models and Toda field theories.


1989 ◽  
Vol 314 (2) ◽  
pp. 439-466 ◽  
Author(s):  
A.C. Davis ◽  
J.A. Gracey ◽  
A.J. MacFarlane ◽  
M.G. Mitchard

Author(s):  
Sergei L. Lukyanov ◽  
Alexander B. Zamolodchikov

This is a two-part course about the integrability of two-dimensional non-linear sigma models (2D NLSM). In the first part general aspects of classical integrability are discussed, based on the O(3) and O(4) sigma-models and the field theories related to them. The second part is devoted to the quantum 2D NLSM. Among the topics considered are: basic facts of conformal field theory, zero-curvature representations, integrals of motion, one-loop renormalizability of 2D NLSM, integrable structures in the so-called cigar and sausage models, and their RG flows. The text contains a large number of exercises of varying levels of difficulty.


Sign in / Sign up

Export Citation Format

Share Document