scholarly journals The supersymmetric version of the Green-Schwarz anomaly cancellation mechanism

1994 ◽  
Vol 332 (1-2) ◽  
pp. 71-76 ◽  
Author(s):  
Antonio Candiello ◽  
Kurt Lechner
1998 ◽  
Vol 13 (11) ◽  
pp. 1805-1816 ◽  
Author(s):  
RICHARD GRIMM ◽  
MAXIMILIAN HASLER ◽  
CARL HERRMANN

We present a new, alternative interpretation of the vector–tensor multiplet as a two-form in central charge superspace. This approach provides a geometric description of the (nontrivial) central charge transformations ab initio and is naturally generalized to include couplings of Chern–Simons forms to the antisymmetric tensor gauge field, giving rise to a N=2 supersymmetric version of the Green–Schwarz anomaly cancellation mechanism.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Shing Yan Li ◽  
Yu-Cheng Qiu ◽  
S.-H. Henry Tye

Abstract Guided by the naturalness criterion for an exponentially small cosmological constant, we present a string theory motivated 4-dimensional $$ \mathcal{N} $$ N = 1 non-linear supergravity model (or its linear version with a nilpotent superfield) with spontaneous supersymmetry breaking. The model encompasses the minimal supersymmetric standard model, the racetrack Kähler uplift, and the KKLT anti-D3-branes, and use the nilpotent superfield to project out the undesirable interaction terms as well as the unwanted degrees of freedom to end up with the standard model (not the supersymmetric version) of strong and electroweak interactions.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Ferruccio Feruglio

Abstract The conditions for the absence of gauge anomalies in effective field theories (EFT) are rivisited. General results from the cohomology of the BRST operator do not prevent potential anomalies arising from the non-renormalizable sector, when the gauge group is not semi-simple, like in the Standard Model EFT (SMEFT). By considering a simple explicit model that mimics the SMEFT properties, we compute the anomaly in the regularized theory, including a complete set of dimension six operators. We show that the dependence of the anomaly on the non-renormalizable part can be removed by adding a local counterterm to the theory. As a result the condition for gauge anomaly cancellation is completely controlled by the charge assignment of the fermion sector, as in the renormalizable theory.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Joe Davighi ◽  
Nakarin Lohitsiri

Abstract In this note we review the role of homotopy groups in determining non-perturbative (henceforth ‘global’) gauge anomalies, in light of recent progress understanding global anomalies using bordism. We explain why non-vanishing of πd(G) is neither a necessary nor a sufficient condition for there being a possible global anomaly in a d-dimensional chiral gauge theory with gauge group G. To showcase the failure of sufficiency, we revisit ‘global anomalies’ that have been previously studied in 6d gauge theories with G = SU(2), SU(3), or G2. Even though π6(G) ≠ 0, the bordism groups $$ {\Omega}_7^{\mathrm{Spin}}(BG) $$ Ω 7 Spin BG vanish in all three cases, implying there are no global anomalies. In the case of G = SU(2) we carefully scrutinize the role of homotopy, and explain why any 7-dimensional mapping torus must be trivial from the bordism perspective. In all these 6d examples, the conditions previously thought to be necessary for global anomaly cancellation are in fact necessary conditions for the local anomalies to vanish.


2009 ◽  
Vol 23 (14) ◽  
pp. 3159-3177
Author(s):  
CARLOS E. REPETTO ◽  
OSCAR P. ZANDRON

By using the Hubbard [Formula: see text]-operators as field variables along with the supersymmetric version of the Faddeev–Jackiw symplectic formalism, a family of first-order constrained Lagrangians for the t-J model is found. In order to satisfy the Hubbard [Formula: see text]-operator commutation rules satisfying the graded algebra spl(2,1), the number and kind of constraints that must be included in a classical first-order Lagrangian formalism for this model are presented. The model is also analyzed via path-integral formalism, where the correlation-generating functional and the effective Lagrangian are constructed. In this context, the introduction of a proper ghost field is needed to render the model renormalizable. The perturbative Lagrangian formalism is developed and it is shown how propagators and vertices can be renormalized to each order. In particular, the renormalized ferromagnetic magnon propagator arising in the present formalism is discussed. As an example, the thermal softening of the magnon frequency is computed.


1994 ◽  
Vol 35 (4) ◽  
pp. 1819-1833 ◽  
Author(s):  
Jens Erler

Sign in / Sign up

Export Citation Format

Share Document